Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 22(22): 27381-91, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25401887

ABSTRACT

We present experimental and numerical investigations of Kerr nonlinearity compensation in a 400-km standard single-mode fiber link with distributed Raman amplification with backward pumping. A dual-pump polarization-independent fiber-based optical parametric amplifier is used for mid-link spectral inversion of 5 × 28-GBd polarization-multiplexed 16-QAM signals. Signal quality factor (Q-factor) improvements of 1.1 dB and 0.8 dB were obtained in the cases of a single-channel and a five-channel wavelength-division multiplexing (WDM) system, respectively. The experimental results are compared to numerical simulations with good agreement. It is also shown with simulations that a maximum transmission reach of 2400 km enabled by the optical phase conjugator is possible for the WDM signal.

2.
Opt Express ; 20(27): 28779-85, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23263117

ABSTRACT

We derive analytic formulas for the improvement in effective optical signal-to-noise ratio brought by a digital nonlinear compensator for dispersion uncompensated links. By assuming Gaussian distributed nonlinear noise, we are able to take both nonlinear signal-to-signal and nonlinear signal-to-noise interactions into account. In the limit of weak nonlinear signal-to-noise interactions, we derive an upper boundary of the OSNR improvement. This upper boundary only depends on fiber parameters as well as on the total bandwidth of the considered wavelength-division multiplexing (WDM) signal and the bandwidth available for back propagation. We discuss the dependency of the upper boundary on different fiber types and also the OSNR improvement in practical system conditions. Furthermore, the analytical formulas are validated by numerical simulations.


Subject(s)
Nonlinear Dynamics , Signal Processing, Computer-Assisted/instrumentation , Surface Plasmon Resonance/instrumentation , Telecommunications/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Models, Theoretical , Scattering, Radiation
3.
Opt Express ; 19(24): 24370-5, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22109464

ABSTRACT

We experimentally investigate polarization-switched quadrature phase-shift keying (PS-QPSK) with a symbol rate of 37.3 GBd corresponding to a bit rate of 112 Gb/s. In a wavelength-division multiplexing (WDM) experiment with 50 GHz channel spacing, the transmission performance of PS-QPSK is compared to that of polarization-division multiplexed QPSK (PDM-QPSK) over an EDFA amplified ultra-large-effective-area fiber link. For a bit-error ratio (BER) of 3.8 × 10(-3), the achieved transmission distance is 11000 km for PS-QSPK and 10000 km for PDM-QPSK.


Subject(s)
Fiber Optic Technology/instrumentation , Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Oceans and Seas
4.
Opt Express ; 19(26): B667-72, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274086

ABSTRACT

We experimentally investigate 28-GBd (84-Gb/s) and 37.3-GBd (112-Gb/s) polarization-switched quadrature phase-shift keying (PS-QPSK) signals. In single-channel transmission experiments over up to 12500 km ultra large effective area fiber, we compare their performance to that of polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK) signals at the same bit rates. The experimental results show that PS-QPSK not only benefits from its better sensitivity but also offers an increased tolerance to intra-channel nonlinearities.

5.
Opt Express ; 19(26): B805-10, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274106

ABSTRACT

We experimentally demonstrate performance enhancements enabled by weighted digital back propagation method for 28 Gbaud PM-16QAM transmission systems, over a 250 km ultra-large area fibre, using only one back-propagation step for the entire link, enabling up to 3 dB improvement in power tolerance with respect to linear compensation only. We observe that this is roughly the same improvement that can be obtained with the conventional, computationally heavy, non-weighted digital back propagation compensation with one step per span. As a further benchmark, we analyze performance improvement as a function of number of steps, and show that the performance improvement saturates at approximately 20 steps per span, at which a 5 dB improvement in power tolerance is obtained with respect to linear compensation only. Furthermore, we show that coarse-step self-phase modulation compensation is inefficient in wavelength division multiplexed transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...