Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Mol Biotechnol ; 66(2): 354-364, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37162721

ABSTRACT

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.


Subject(s)
Ammonium Compounds , Rabies virus , Rabies , Animals , Sf9 Cells , Rabies virus/genetics , Glutamine , Baculoviridae/genetics , Recombinant Proteins/genetics , Culture Media, Serum-Free , Glutamic Acid , Lactates , Glucose , Spodoptera
2.
Front Pharmacol ; 14: 1181566, 2023.
Article in English | MEDLINE | ID: mdl-37377933

ABSTRACT

Introdutcion: The Zika virus (ZIKV) infections are a healthcare concern mostly in the Americas, Africa, and Asia but have increased its endemicity area beyond these geographical regions. Due to the advances in infections by Zika virus, it is imperative to develop diagnostic and preventive tools against this viral agent. Virus-like particles (VLPs) appear as a suitable approach for use as antiviral vaccines. Methods: In this work, a methodology was established to produce virus-like particles containing the structural proteins, C, prM, and E of Zika virus produced in insect cells using the gene expression system derived from baculovirus. The vector pFast- CprME -ZIKV was constructed containing the gene sequences of Zika virus structural proteins and it was used to generate the recombinant bacmids (Bac- CprME -ZIKV) through transformation into DH10BacTM cells. The Bac- CprME -ZIKV was transfected in Spodoptera frugiperda (Sf9) insect cells and batches of BV- CprME -ZIKV were obtained by infection assays using a multiplicity of infection of 2. The Sf9 cells were infected, and the supernatant was collected 96 h post-infection. The expression of the CprME -ZIKV protein on the cell surface could be observed by immunochemical assays. To concentrate and purify virus-like particles, the sucrose and iodixanol gradients were evaluated, and the correct CprME -ZIKV proteins' conformation was evaluated by the Western blot assay. The virus-like particles were also analyzed and characterized by transmission electron microscopy. Results and discussion: Spherical structures like the native Zika virus from 50 to 65 nm containing the CprME -ZIKV proteins on their surface were observed in micrographs. The results obtained can be useful in the development path for a vaccine candidate against Zika virus.

3.
Mol Biotechnol ; 65(6): 970-982, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36396754

ABSTRACT

This work aimed to describe the dynamics of the Sf9 insect cells death and primary metabolism when this host is infected simultaneously by two recombinant baculoviruses (BV) expressing rabies glycoprotein (BVG) and matrix protein (BVM) genes to produce rabies virus-like particles (VLP) at different multiplicities of infection (MOI). Schott flasks essays covering a wide range of MOI for both BV were performed. Viable cell density, cell viability, glucose, glutamine, glutamate, lactate, ammonium, and rabies proteins concentrations were monitored over the infection phase. The expression of both recombinant proteins was not limited by glucose, glutamine, and glutamate in a broad MOI (pfu/cell) range of BVG (0.15-12.5) and BVM (0.1-5.0) using SF900 III serum free culture medium. Death phase initiation and the specific death rate depend on BV MOI. The wave pattern of nutrient/metabolite profiles throughout the viral infection phase is related to the baculovirus lytic cycle. The optimal MOIs ratio between BVG (2.5-4.5) and BVM (1.0-3.0) for maximum protein expression was defined. The produced rabies VLP sizes are close to 78 nm. In general, these work outputs bring a better understanding of the metabolic performance of Sf9 cells when infected by BV for producing VLP, and specifically, for progressing in a rabies VLP vaccine development.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Animals , Humans , Baculoviridae/genetics , Baculoviridae/metabolism , Sf9 Cells , Cell Line , Rabies virus/genetics , Glutamine/metabolism , Glutamates/metabolism , Glucose/metabolism
4.
J Chem Technol Biotechnol, in press, 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5221

ABSTRACT

BACKGROUND This study aimed to establish chemometric models using Raman spectroscopy data for biochemical monitoring of rabies Virus-Like Particles (VLP) production based on baculovirus/insect cell system. The models were developed using fresh and stored samples from the initial development stages (Schott culture flasks). The following modeling techniques were assessed: partial least squares (PLS) and artificial neural networks (ANN). The effects of spectral filtering approaches, spectral ranges (400–1850 cm−1; 100–3425 cm−1), and sample cryopreservation were also considered. The applicability of the models was evaluated using experimental data from assays carried out in a benchtop bioreactor. RESULTS The results showed that the prediction capacity of the chemometric models was negatively impacted when samples from rabies VLP production were cryopreserved. Further studies are needed to confirm the maximum storage time for samples (< 4 months) without a significant difference in model predictions compared to those from an in line database. The dilution of the sample should be kept constant throughout the rabies VLP development stages. A nonlinear correlation was observed between dilution and the predicted values of biochemical parameters from Raman spectral data. The choice of spectral filtering has a major impact on the prediction accuracy of chemometric models. CONCLUSION The optimal filtering approach should be individually optimized for each biochemical parameter. The ANN models were significantly more suitable for biochemical monitoring than the PLS approach. The 400–1850 cm−1 Raman shift range is recommended for biochemical monitoring of rabies VLP using a baculovirus/insect cell platform when samples are cell-free.

5.
Front Pharmacol, v. 14, 1181566, jun. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4959

ABSTRACT

Introdutcion: The Zika virus (ZIKV) infections are a healthcare concern mostly in the Americas, Africa, and Asia but have increased its endemicity area beyond these geographical regions. Due to the advances in infections by Zika virus, it is imperative to develop diagnostic and preventive tools against this viral agent. Virus-like particles (VLPs) appear as a suitable approach for use as antiviral vaccines. Methods: In this work, a methodology was established to produce virus-like particles containing the structural proteins, C, prM, and E of Zika virus produced in insect cells using the gene expression system derived from baculovirus. The vector pFast- CprME -ZIKV was constructed containing the gene sequences of Zika virus structural proteins and it was used to generate the recombinant bacmids (Bac- CprME -ZIKV) through transformation into DH10BacTM cells. The Bac- CprME -ZIKV was transfected in Spodoptera frugiperda (Sf9) insect cells and batches of BV- CprME -ZIKV were obtained by infection assays using a multiplicity of infection of 2. The Sf9 cells were infected, and the supernatant was collected 96 h post-infection. The expression of the CprME -ZIKV protein on the cell surface could be observed by immunochemical assays. To concentrate and purify virus-like particles, the sucrose and iodixanol gradients were evaluated, and the correct CprME -ZIKV proteins’ conformation was evaluated by the Western blot assay. The virus-like particles were also analyzed and characterized by transmission electron microscopy. Results and discussion: Spherical structures like the native Zika virus from 50 to 65 nm containing the CprME -ZIKV proteins on their surface were observed in micrographs. The results obtained can be useful in the development path for a vaccine candidate against Zika virus.

6.
Mol Biotechnol, v. 66, p. 354-364, abr. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4915

ABSTRACT

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to fnally obtain rabies VLP in two culture systems: Schott fask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specifc rates were quantifed over the exponential growth phase and infection stage. The highest uptake specifc rate was observed for glucose (42.5× 10–12 mmol cell/h) in SF and for glutamine (30.8× 10–12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10–10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The fndings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.

7.
Proc Bioch, v. 124, p. 189-200, jan. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4718

ABSTRACT

The technologies used in rabies vaccines manufacturing for human use are based on the inactivated virus platform. An alternative to traditional vaccines is virus-like particles (VLPs). This work aimed to characterize the oxygen uptake and transfer rate parameters throughout recombinant baculovirus (rBV) and rabies VLPs production using Sf9 cells in stirred tank bioreactor (STB) for a better bioprocess understanding and scalability. Four runs in a bench STB were performed: cell culture without infection; cells infected singly with rBV bearing rabies virus glycoprotein (rBVG, multiplicity of infection, MOI=0.1 pfu/cell) and matrix protein (rBVM, MOI=0.1 pfu/cell), and coinfected with BVG and BVM at MOI of 3 and 2 pfu/cell, respectively. The specific oxygen uptake rate () and volumetric oxygen transfer coefficient () were monitored throughout the reactions, as well as viable cell concentration, viability, rBV titers, and protein concentration. According to the results herein, the aeration and agitation systems in a bioreactor at a higher scale could be designed using the criterium for scale-up of constant , without oxygen facilities. Besides, rabies VLPs volumetric yield of 2.8 mg/L with a typical size (55–68 nm) was obtained. These findings suggest a promising bioprocess for rabies VLPs at a commercial scale.

8.
Mol Biotechnol, v. 65, 970–982, nov. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4717

ABSTRACT

This work aimed to describe the dynamics of the Sf9 insect cells death and primary metabolism when this host is infected simultaneously by two recombinant baculoviruses (BV) expressing rabies glycoprotein (BVG) and matrix protein (BVM) genes to produce rabies virus-like particles (VLP) at diferent multiplicities of infection (MOI). Schott fasks essays covering a wide range of MOI for both BV were performed. Viable cell density, cell viability, glucose, glutamine, glutamate, lactate, ammonium, and rabies proteins concentrations were monitored over the infection phase. The expression of both recombinant proteins was not limited by glucose, glutamine, and lutamate in a broad MOI (pfu/cell) range of BVG (0.15–12.5) and BVM (0.1–5.0) using SF900 III serum free culture medium. Death phase initiation and the specifc death rate depend on BV MOI. The wave pattern of nutrient/metabolite profles throughout the viral infection phase is related to the baculovirus lytic cycle. The optimal MOIs ratio between BVG (2.5–4.5) and BVM (1.0–3.0) for maximum protein expression was defned. The produced rabies VLP sizes are close to 78 nm. In general, these work outputs bring a better understanding of the metabolic performance of Sf9 cells when infected by BV for producing VLP, and specifcally, for progressing in a rabies VLP vaccine development.

9.
Mol Biotechnol ; 63(11): 1068-1080, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34228257

ABSTRACT

Rabies is an ancient zoonotic disease that still causes the death of over 59,000 people worldwide each year. The rabies lyssavirus encodes five proteins, including the envelope glycoprotein and the matrix protein. RVGP is the only protein exposed on the surface of viral particle, and it can induce immune response with neutralizing antibody formation. RVM has the ability to assist with production process of virus-like particles. VLPs were produced in recombinant baculovirus system. In this work, two recombinant baculoviruses carrying the RVGP and RVM genes were constructed. From the infection and coinfection assays, we standardized the best multiplicity of infection and the best harvest time. Cell supernatants were collected, concentrated, and purified by sucrose gradient. Each step was used for protein detection through immunoassays. Sucrose gradient analysis enabled to verify the separation of VLPs from rBV. Through the negative contrast technique, we visualized structures resembling rabies VLPs produced in insect cells and rBV in the different fractions of the sucrose gradient. Using ELISA to measure total RVGP, the recovery efficiency of VLPs at each stage of the purification process was verified. Thus, these results encourage further studies to confirm whether rabies VLPs are a promising candidate for a veterinary rabies vaccine.


Subject(s)
Baculoviridae/genetics , Insecta/metabolism , Rabies Vaccines/biosynthesis , Rabies virus/metabolism , Rabies/virology , Vaccines, Virus-Like Particle/biosynthesis , Animals , Baculoviridae/isolation & purification , Baculoviridae/metabolism , Cells, Cultured , Humans , Insecta/immunology , Insecta/virology , Rabies Vaccines/genetics , Rabies Vaccines/immunology , Rabies Vaccines/isolation & purification , Rabies virus/immunology , Rabies virus/isolation & purification , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/isolation & purification
10.
Mol Biotechnol, v. 63, p. 1068–1080, jul. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3891

ABSTRACT

Rabies is an ancient zoonotic disease that still causes the death of over 59,000 people worldwide each year. The rabies lyssavirus encodes five proteins, including the envelope glycoprotein and the matrix protein. RVGP is the only protein exposed on the surface of viral particle, and it can induce immune response with neutralizing antibody formation. RVM has the ability to assist with production process of virus-like particles. VLPs were produced in recombinant baculovirus system. In this work, two recombinant baculoviruses carrying the RVGP and RVM genes were constructed. From the infection and coinfection assays, we standardized the best multiplicity of infection and the best harvest time. Cell supernatants were collected, concentrated, and purified by sucrose gradient. Each step was used for protein detection through immunoassays. Sucrose gradient analysis enabled to verify the separation of VLPs from rBV. Through the negative contrast technique, we visualized structures resembling rabies VLPs produced in insect cells and rBV in the different fractions of the sucrose gradient. Using ELISA to measure total RVGP, the recovery efficiency of VLPs at each stage of the purification process was verified. Thus, these results encourage further studies to confirm whether rabies VLPs are a promising candidate for a veterinary rabies vaccine.

11.
BMC Chem ; 14(1): 34, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32355912

ABSTRACT

Eugenia punicifolia (Kunth) D. C. (Myrtaceae) has been showing interesting biological activities in the literature which was correlated to its phenolic compounds. In the sense of a better recovering of phenolics with the best antioxidant and antiproliferative activities, an extraction, based on multivariate analytical approach, was developed from E. punicifolia leaves. The different extractor solvents (ethanol, methanol and water) and their binary and ternary combinations were evaluated using a simplex-centroid mixture design and surface response methodology. The optimized crude extracts were investigated for phenol and flavonoid content and compared to their antioxidant (EC50) and antiproliferative properties against HEp-2 (cell line derived from the oropharyngeal carcinoma) and mononuclear viability cells. Ethanolic extracts showed the best phenolic content with the highest antioxidant activity and moderated activity antiproliferative to HEp-2. ESI-QTOF-MS revealed the presence of quercetin and myricetin derivatives, which was correlated to activities tested. Then, simplex-centroid design allowed us to correlate the Eugenia punicifolia biological activities with the extracts obtained from solvent different polarity mixtures.

12.
Cytotechnology ; 71(5): 949-962, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31422494

ABSTRACT

The production of biopharmaceuticals as vaccines in serum-free media results in reduced risk of contamination and simpler downstream processing. The production of enveloped viruses and viral vectors such as Semliki Forest Virus (SFV) typically requires lipids that are provided by supplementation with animal serum, so production under serum-free conditions is challenging. In this work, the capacity to deliver genetic material of SFV-viral replicon particles (SFV-VRPs) produced in BHK-21 cells adapted to serum-free medium (BHK/SFM) was evaluated. Three transgenes were evaluated: GFP used as a model protein, while hepatitis C virus nonstructural protein 3 protease domain (HCV-NS3p) and rabies virus glycoprotein (RVGP) were selected based on their distinct nature (enzyme and glycoprotein, respectively). BHK/SFM cells produced a sevenfold higher number of SFV-VRPs, as determined by qRT-PCR. These particles showed similar capacities of infecting BHK/FBS or BHK/SFM cells. GFP expression was evaluated by flow cytometry, HCV-NS3p activity by enzymatic assay, and RVGP expression by ELISA and Western Blot. Expression analysis revealed higher levels of GFP and HCV-NS3p in BHK/SFM, while the levels of RVGP were similar for BHK/SFM and BHK/FBS. In conclusion, the BHK/SFM cells showed increased SFV-VRP production yields, without affecting vector infectivity or heterologous gene expression, hence validating the use of BHK/SFM for industrial applications.

13.
Cytotechnology ; 71: 949–962, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17526

ABSTRACT

The production of biopharmaceuticals as vaccines in serum-free media results in reduced risk of contamination and simpler downstream processing. The production of enveloped viruses and viral vectors such as Semliki Forest Virus (SFV) typically requires lipids that are provided by supplementation with animal serum, so production under serum-free conditions is challenging. In this work, the capacity to deliver genetic material of SFV-viral replicon particles (SFV-VRPs) produced in BHK-21 cells adapted to serum-free medium (BHK/SFM) was evaluated. Three transgenes were evaluated: GFP used as a model protein, while hepatitis C virus nonstructural protein 3 protease domain (HCV-NS3p) and rabies virus glycoprotein (RVGP) were selected based on their distinct nature (enzyme and glycoprotein, respectively). BHK/SFM cells produced a sevenfold higher number of SFV-VRPs, as determined by qRT-PCR. These particles showed similar capacities of infecting BHK/FBS or BHK/SFM cells. GFP expression was evaluated by flow cytometry, HCV-NS3p activity by enzymatic assay, and RVGP expression by ELISA and Western Blot. Expression analysis revealed higher levels of GFP and HCV-NS3p in BHK/SFM, while the levels of RVGP were similar for BHK/SFM and BHK/FBS. In conclusion, the BHK/SFM cells showed increased SFV-VRP production yields, without affecting vector infectivity or heterologous gene expression, hence validating the use of BHK/SFM for industrial applications.

14.
J biotechnol ; 304: 63-69, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17168

ABSTRACT

The Semliki Forest virus (SFV) viral vector has been widely used for transient protein expression. This study aimed to analyze comprehensively the capacity of SFV vector to express rabies lyssavirus glycoprotein (RVGP) in mammalian cells. The assessed parameters were transfection strategy, multiplicity of infection (MOI), harvest time and mammalian cell host. Two transfection approaches, electroporation and lipofection were evaluated to obtain the recombinant SFV, and the electroporation was found to be the most effective. Viral quantification by RT-qPCR was performed to elucidate the relation between the amount of recombinant virus utilized in the infection process and the production levels of the heterologous protein. Four different multiplicities of infection (MOIs = 1; 10; 15; 50) were evaluated using five mammalian cell lines: BHK-21, HuH-7, Vero, L929, and HEK-293T. Protein expression was assessed at two harvest times after infection (24 and 48 h). The recombinant protein generated was characterized by western blot, dot blot, and indirect immunofluorescence (IIF), while its concentration was determined by enzyme-linked immunosorbent assay (ELISA). Similar expression patterns were observed in cell lines BHK-21, HEK-293T, L929, and Vero, with higher RVGP production in the first 24 h. The BHK-21 cells showed yields of up to 4.3 µg per 106 cells when lower MOIs (1 and 10) were used. The HEK-293 T cells also showed similar production (4.3 µg per 106 cells) with MOI of 1, while the L929 and Vero cell lines showed lower expression rates of 2.82 and 1.26 µg per 106 cells, respectively. These cell lines showed lower expression levels at 48 h after infection compared to 24 h. Controversially, in the case of the HuH-7 cell line, RVGP production was higher at 48 h after infection (4.0 µg per 106 cells) and using MOIs of 15 and 50. This work may contribute to optimize the RVGP production using SFV system in mammalian cells. This study can also substantiate for example, the development of approaches that use of SFV for applications for other protein expressions and suggests values for relevant parameters and cell lines of this biotechnique.

15.
Cytotechnology, v. 71, p. 949-962, ago. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2968

ABSTRACT

The production of biopharmaceuticals as vaccines in serum-free media results in reduced risk of contamination and simpler downstream processing. The production of enveloped viruses and viral vectors such as Semliki Forest Virus (SFV) typically requires lipids that are provided by supplementation with animal serum, so production under serum-free conditions is challenging. In this work, the capacity to deliver genetic material of SFV-viral replicon particles (SFV-VRPs) produced in BHK-21 cells adapted to serum-free medium (BHK/SFM) was evaluated. Three transgenes were evaluated: GFP used as a model protein, while hepatitis C virus nonstructural protein 3 protease domain (HCV-NS3p) and rabies virus glycoprotein (RVGP) were selected based on their distinct nature (enzyme and glycoprotein, respectively). BHK/SFM cells produced a sevenfold higher number of SFV-VRPs, as determined by qRT-PCR. These particles showed similar capacities of infecting BHK/FBS or BHK/SFM cells. GFP expression was evaluated by flow cytometry, HCV-NS3p activity by enzymatic assay, and RVGP expression by ELISA and Western Blot. Expression analysis revealed higher levels of GFP and HCV-NS3p in BHK/SFM, while the levels of RVGP were similar for BHK/SFM and BHK/FBS. In conclusion, the BHK/SFM cells showed increased SFV-VRP production yields, without affecting vector infectivity or heterologous gene expression, hence validating the use of BHK/SFM for industrial applications.

16.
J biotechnol, v. 304, p. 63-69, oct. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2824

ABSTRACT

The Semliki Forest virus (SFV) viral vector has been widely used for transient protein expression. This study aimed to analyze comprehensively the capacity of SFV vector to express rabies lyssavirus glycoprotein (RVGP) in mammalian cells. The assessed parameters were transfection strategy, multiplicity of infection (MOI), harvest time and mammalian cell host. Two transfection approaches, electroporation and lipofection were evaluated to obtain the recombinant SFV, and the electroporation was found to be the most effective. Viral quantification by RT-qPCR was performed to elucidate the relation between the amount of recombinant virus utilized in the infection process and the production levels of the heterologous protein. Four different multiplicities of infection (MOIs = 1; 10; 15; 50) were evaluated using five mammalian cell lines: BHK-21, HuH-7, Vero, L929, and HEK-293T. Protein expression was assessed at two harvest times after infection (24 and 48 h). The recombinant protein generated was characterized by western blot, dot blot, and indirect immunofluorescence (IIF), while its concentration was determined by enzyme-linked immunosorbent assay (ELISA). Similar expression patterns were observed in cell lines BHK-21, HEK-293T, L929, and Vero, with higher RVGP production in the first 24 h. The BHK-21 cells showed yields of up to 4.3 µg per 106 cells when lower MOIs (1 and 10) were used. The HEK-293 T cells also showed similar production (4.3 µg per 106 cells) with MOI of 1, while the L929 and Vero cell lines showed lower expression rates of 2.82 and 1.26 µg per 106 cells, respectively. These cell lines showed lower expression levels at 48 h after infection compared to 24 h. Controversially, in the case of the HuH-7 cell line, RVGP production was higher at 48 h after infection (4.0 µg per 106 cells) and using MOIs of 15 and 50. This work may contribute to optimize the RVGP production using SFV system in mammalian cells. This study can also substantiate for example, the development of approaches that use of SFV for applications for other protein expressions and suggests values for relevant parameters and cell lines of this biotechnique.

17.
Environ Monit Assess ; 190(6): 319, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29717330

ABSTRACT

The water quality index (WQI) is an important tool for water resource management and planning. However, it has major disadvantages: the generation of chemical waste, is costly, and time-consuming. In order to overcome these drawbacks, we propose to simplify this index determination by replacing traditional analytical methods with ultraviolet-visible (UV-Vis) spectrophotometry associated with artificial neural network (ANN). A total of 100 water samples were collected from two rivers located in Assis, SP, Brazil and calculated the WQI by the conventional method. UV-Vis spectral analyses between 190 and 800 nm were also performed for each sample followed by principal component analysis (PCA) aiming to reduce the number of variables. The scores of the principal components were used as input to calibrate a three-layer feed-forward neural network. Output layer was defined by the WQI values. The modeling efforts showed that the optimal ANN architecture was 19-16-1, trainlm as training function, root-mean-square error (RMSE) 0.5813, determination coefficient between observed and predicted values (R2) of 0.9857 (p < 0.0001), and mean absolute percentage error (MAPE) of 0.57% ± 0.51%. The implications of this work's results open up the possibility to use a portable UV-Vis spectrophotometer connected to a computer to predict the WQI in places where there is no required infrastructure to determine the WQI by the conventional method as well as to monitor water body's in real time.


Subject(s)
Environmental Monitoring/methods , Neural Networks, Computer , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Brazil , Principal Component Analysis , Rivers/chemistry , Spectrophotometry, Ultraviolet , Ultraviolet Rays , Water Quality
18.
Cytotechnology ; 66(4): 605-17, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23846480

ABSTRACT

This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 10(6) cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation-aeration systems.

19.
Braz. arch. biol. technol ; 56(5): 859-866, Sept.-Oct. 2013. ilus
Article in English | LILACS | ID: lil-689814

ABSTRACT

The number of biopharmaceuticals for medical and veterinarian use produced in mammalian cells is increasing year after year. All of them are obtained by stable recombinant cell lines. However, it is recognized that transient gene expression produces high level expression in a short time. In that sense, viral vectors have been extensively used for producing recombinant proteins on lab-scale. Among them, Semliki Forest virus is commonly employed for this purpose. This review discusses the main aspects related to the use of Semliki Forest virus technology as well as its advantages and drawbacks which limit currently its utilization in biopharmaceutical industry on large-scale.

20.
Nucl Med Biol ; 39(1): 145-53, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22079036

ABSTRACT

INTRODUCTION: The aim of this work was to quantify the effects of injection volume at different technetium-99m specific radiotracer doses on its lymphatic movement in animal model. PROCEDURES: Effects of injection volume (50, 100 µl) at different doses (0.05, 0.135, 0.22 nmol) on popliteal node (PN) detection were studied in rats. The radiotracer under study was (99m)Technetium-cysteine-mannose-dextran conjugate (30 kDa). RESULTS: At 0.05 nmol dose, higher PN uptake was observed at 50 µl injection volume (2.6 fold increase). Conversely, at 0.135 nmol dose, an increase of radiotracer retention in PN was achieved at 100 µl volume, 78% higher than 50 µl. However, at 0.22 nmol dose, the injection volume changes did not influence on the PN uptake. Considering as suitable radiotracer performance: high PN uptake and extraction, better combinations were 0.05 nmol/50 µl, 0.135 nmol/100 µl, 0.22/50 µl. CONCLUSION: Suitable performances could be reached by proper combinations of dose, injection volume and concentration for a specific radiotracer used in sentinel lymph node detection.


Subject(s)
Cysteine/analogs & derivatives , Dextrans/pharmacokinetics , Lymph Nodes/metabolism , Mannose/pharmacokinetics , Organotechnetium Compounds/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Animals , Cysteine/administration & dosage , Cysteine/pharmacokinetics , Dextrans/administration & dosage , Female , Lymph Nodes/diagnostic imaging , Mannose/administration & dosage , Organotechnetium Compounds/administration & dosage , Radionuclide Imaging , Radiopharmaceuticals/administration & dosage , Rats , Rats, Wistar , Sentinel Lymph Node Biopsy/methods , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...