Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047503

ABSTRACT

Botrytis cinerea is a phytopathogenic fungus that causes serious damage to the agricultural industry by infecting various important crops. 2-allylphenol has been used in China as a fungicide for more than a decade, and it has been shown that is a respiration inhibitor. A series of derivatives of 2-allylphenol were synthesized and their activity against B. cinerea was evaluated by measuring mycelial growth inhibition. Results indicate that small changes in the chemical structure or the addition of substituent groups in the aromatic ring induce important variations in activity. For example, changing the hydroxyl group by methoxy or acetyl groups produces dramatic increases in mycelial growth inhibition, i.e., the IC50 value of 2-allylphenol decreases from 68 to 2 and 1 µg mL-1. In addition, it was found that the most active derivatives induce the inhibition of Bcaox expression in the early stages of B. cinerea conidia germination. This gene is associated with the activation of the alternative oxidase enzyme (AOX), which allows fungus respiration to continue in the presence of respiratory inhibitors. Thus, it seems that 2-allylphenol derivatives can inhibit the normal and alternative respiratory pathway of B. cinerea. Therefore, we believe that these compounds are a very attractive platform for the development of antifungal agents against B. cinerea.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/chemistry , Fungicides, Industrial/chemistry , Botrytis
2.
Chemphyschem ; 23(19): e202200286, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-35759412

ABSTRACT

Perovskite have had a great impact on the solid-state physics world in the last decade not only achieving great success in photovoltaics but, more recently, also in the implementation of other optoelectronic devices. One of the main obstacles for the adoption of Pb-based perovskite technologies are the high amounts of Pb needed in the conventional preparation methods. Here we present for the first time a detailed analysis of the photophysical and photoelectrochemical properties of CsPbBr3 films directly grown on fluorine-doped tin oxide (FTO) coated glass through a novel technique based in the electrodeposition of PbO2 as CsPbBr3 precursor. This technique allows to save up to 90 % of the Pb used compared to traditional methods and can be scalable compared with the commonly used spin-coating process. The low temperature analysis of their photoluminescence spectra, performed in both steady state and time dependence, revealed a strong interaction between electrons and longitudinal optical (LO) phonons dominant at high temperatures. On the other hand, the electrochemical and photoelectrochemical analysis proves that CsPbBr3 prepared using this new method has state-of-the-art features, showing a p-type behavior under depletion regime. This is also confirmed by photoelectrochemical measurements using p-benzoquinone as target molecule. These results prove that the proposed method can be used to produce excellent CsPbBr3 films, saving much of the lead waste.

SELECTION OF CITATIONS
SEARCH DETAIL
...