Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202403313, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742679

ABSTRACT

Nanostructuration of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) depends on the secondary structure adopted by the polymer and the functional group used to connect the chiral pendant to the PPA backbone. Thus, while PPAs with dynamic and flexible scaffolds (para- and meta-substituted, ω1<165°) generate by nanoprecipitation low polydisperse nanospheres with controllable size at different acetone/water mixtures, those with a quasi-static behavior and the presence of an extended, almost planar structure (ortho-substituted, ω1>165°), aggregate into a mixture of spherical and oval nanostructures whose size is not controlled. Photostability studies show that poly(phenylacetylene) particles are more stable to light irradiation than when dissolved macromolecularly. Moreover, the photostability of the particle depends on the secondary structure of the PPA and its screw sense excess. This fact, in combination with the encapsulation ability of these polymer particles, allows the creation of light stimuli-responsive nanocarriers, whose cargo can be delivered by light irradiation.

2.
Nanoscale ; 14(36): 13066-13072, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36069960

ABSTRACT

A helical copoly(phenylacetylene) that follows a dynamic chiral accord effect has been designed to further synthesize dynamic chiral nanocomposites. Its two pendants are benzamides of (L)-methionine methyl ester [(L)-1, 20%] and (L)-alanine methyl ester [(L)-2, 80%], the former being responsible for binding the copolymer to metallic nanoparticles (MNPs, M = Au, Ag) via the thioether. The two chiral comonomers have analogous dynamic behavior, and therefore, the copolymer-poly-[(L)-10.2-co-(L)-20.8]-adopts a preferred helical sense that can be amplified or inverted by stimuli acting simultaneously on both pendants. The formation of nanocomposites can be followed by different sequential chiroptical responses of the copolymer once the helical polymer metal-complexes are formed-M to P helix inversion by the formation of poly-[(L)-10.2-co-(L)-20.8]/Au3+ or poly-[(L)-10.2-co-(L)-20.8]/Ag+-and further reduction with NaBH4 to generate the corresponding nanocomposites-P to M helix inversion by the formation of poly-[(L)-10.2-co-(L)-20.8]-AuNPs (6 nm) and poly-[(L)-10.2-co-(L)-20.8]-AgNPs (5 nm). These nanocomposites exhibit the properties of both components, helix inversion in the PPA and a colorimetric response in the MNPs triggered by metal ions.

3.
Macromol Rapid Commun ; 43(3): e2100616, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34761481

ABSTRACT

The helical sense control of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) is greatly affected when they are conjugated to AuNPs through a strong thiol-Au connection, which restricts conformational changes at the polymer. Thus, the classical thiol-MNP bonds must be replaced by weaker ones, such as supramolecular amide-Au interactions. A straightforward preparation of the PPA-Au nanocomposite by reduction of a preformed PPA-Au3+ complex cannot be used due to a redox reaction between the two components of the complex which degrades the polymer. To avoid the interaction between the PPA and the Au3+ ions before the reduction takes place, the metal ions are added to the polymer solution capped as a TOAB complex, which keeps the PPA stable due to the lack of PPA-Au3+ interactions. Ulterior reduction of the Au3+ ions by NaBH4 affords the desired nanocomposite, where the AuNPs are stabilized by supramolecular anilide-AuNPs interactions. By using this approach, 3.7 nm gold nanoparticles are generated and aligned along the polymer chain with a regular distance between particles of 6 nm that corresponds to two helical pitches. These nanocomposites show stimuli-responsive properties and are also able to form macroscopically chiral nanospheres with tunable size.


Subject(s)
Metal Nanoparticles , Nanocomposites , Gold , Polymers
4.
Nanoscale Horiz ; 5(3): 495-500, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32118234

ABSTRACT

A novel type of stimuli-responsive dynamic helical polymer-metal nanoparticle nanocomposite formed by a helical poly(phenylacetylene) (PPA) combined with gold nanoparticles (AuNPs) is described. Thus, several PPA copolymers containing the ethynyl-4-benzamide of (S)-phenylglycine methyl ester (M1) to dictate the helical structure/sense of the copolymer, and the ethynyl-4-benzamide of the 11-((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)undecane-1-thiol (M2) to link the copolymer to the AuNPs are prepared. Different morphologies of these nanocomposites were obtained by considering the thiol ratio and the self-assembly properties of the PPA, which generates from dispersed AuNPs to fibre-like structures. All these nanocomposites show a dynamic chiral behaviour, it being possible to manipulate their helical sense by the action of external stimuli. Moreover, it is possible to control the aggregation of these nanocomposites into macroscopically chiral nanospheres with low polydispersity by using Ba2+ as a crosslinking agent.

5.
Small ; 13(2)2017 Jan.
Article in English | MEDLINE | ID: mdl-27758030

ABSTRACT

Nanospheres and nanotubes with full control of their size and helical sense are obtained in chloroform from the axially racemic chiral poly(phenylacetylene) poly-(R)-1 using either Ag+ as both chiral inducer and cross-linking agent or Na+ as chiral inducer and Ag+ as cross-linking agent. The size is tuned by the polymer/ion ratio while the helical sense is modulated by the polymer/cosolvent (i.e., MeCN) ratio. In this way, the helicity and the size of the nanoparticles can be easily interconverted by very simple experimental changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...