Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(14): e202317482, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38346169

ABSTRACT

The synthesis of artificial sequence-defined polymers that match and extend the functionality of proteins is an important goal in materials science. One way of achieving this is to program a sequence of chemical reactions between precursor building blocks by means of attached oligonucleotide adapters. However, hydrolysis of the reactive building blocks has so far limited the length and yield of product that can be obtained using DNA-templated reactions. Here, we report an architecture for DNA-templated synthesis in which reactants are tethered at internal abasic sites on opposite strands of a DNA duplex. We show that an abasic site within a DNA duplex can protect a nearby thioester from degradation, significantly increasing the yield of a DNA-templated reaction. This protective effect has the potential to overcome the challenges associated with programmable, sequence-controlled synthesis of long non-natural polymers by extending the lifetime of the reactive building blocks.


Subject(s)
DNA Replication , DNA , DNA/metabolism , Oligonucleotides , Polymers
2.
Front Chem ; 8: 41, 2020.
Article in English | MEDLINE | ID: mdl-32083058

ABSTRACT

Translation of genetic information into peptide products is one of the fundamental processes of biology. How this occurred prebiotically, in the absence of enzyme catalysts, is an intriguing question. Nucleic acid-templated synthesis (NATS) promotes reactions by bringing building blocks tethered to complementary DNA strands into close proximity and has been shown to enable peptide synthesis without enzymes-it could therefore serve as a model for prebiotic translation of information stored in nucleic acid sequences into functional peptides. The decomposition of highly reactive DNA adapters has so far limited the effectiveness of NATS, but these studies have been performed exclusively in aqueous solution. Deep eutectic solvents (DESs) have been proposed as a feasible solvent for prebiotic replication of nucleic acids, and here are studied as media for prebiotic translation using NATS as a model. DESs are shown to enhance the stability of DNA-conjugated activated esters, the precursors of peptides. However, this enhanced stability was coupled with decreased amine reactivity that hampered the formation of peptide bonds in DESs. These properties are exploited to demonstrate the storage of DNA-conjugated activated esters in a DES followed by transfer into aqueous buffer to activate the NATS of peptides "on demand." These findings, together with the reported functions of DESs in prebiotic processes, shed light on how DESs could have facilitated the non-enzymatic translation of genetic information into functional peptides on the early Earth.

3.
Org Biomol Chem ; 17(34): 7874-7877, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31424467

ABSTRACT

The selectivity of nucleic acid hybridisation can be exploited to template chemical reactions, enabling materials discovery by chemical evolution. However, to date the range of reactions that can be used has been limited to those that are compatible with aqueous media, since the addition of organic co-solvents can have a large impact on the stability of nucleic acid duplexes. Peptide nucleic acids (PNAs) are promising in this regard because previous studies have suggested they may be stable as duplexes in high organic content solvent mixtures. Here, we use micro-differential scanning calorimetry (micro-DSC) to confirm for the first time that double-stranded PNA (dsPNA) is stable in N,N-dimethylformamide (DMF)/water mixtures up to 95 vol% DMF. Using fluorescence, we corroborate these results and show that the isothermal annealing of PNA in high DMF content solution is also rapid. These findings suggest that PNA could enable the use of a range of water-sensitive chemistries in nucleic acid templating applications.


Subject(s)
Peptide Nucleic Acids/chemistry , Calorimetry, Differential Scanning , Dimethylformamide/chemistry , Fluorescence , Nucleic Acid Conformation , Nucleic Acid Hybridization , Peptide Nucleic Acids/genetics , Solvents/chemistry , Transition Temperature , Water/chemistry
4.
Chem Commun (Camb) ; 53(33): 4605-4608, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28394375

ABSTRACT

The synthesis of P-stereogenic bisphosphine ligands starting from a phosphinous acid chiral synthon and hydrazine is reported. The dialkylation of the hydrazine backbone yielded atropo- and nitrogen inversion isomers which are in slow exchange. The crystallization of one of the isomers allowed us to study the reaction kinetics of the equilibria. The new ligands were tested in the Rh catalysed asymmetric hydrogenation of various benchmark substrates attaining up to 99% ee.

SELECTION OF CITATIONS
SEARCH DETAIL
...