Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162951

ABSTRACT

Immune-inflammatory activation impacts extracellular vesicles (EVs), including their miRNA cargo. There is evidence for changes in the EV miRNome in inflammation-associated neuropsychiatric disorders. This mouse study investigated: (1) effects of systemic lipopolysaccharide (LPS) and chronic social stress (CSS) on plasma EV miRNome; and (2) physiological, transcriptional, and behavioural effects of peripheral or central delivered LPS-activated EVs in recipient mice. LPS or CSS effects on the plasma EV miRNome were assessed by using microRNA sequencing. Recipient mice received plasma EVs isolated from LPS-treated or SAL-treated donor mice or vehicle only, either intravenously or into the nucleus accumbens (NAc), on three consecutive days. Bodyweight, spleen or NAc transcriptome and reward (sucrose) motivation were assessed. LPS and CSS increased the expression of 122 and decreased expression of 20 plasma EV miRNAs, respectively. Peripheral LPS-EVs reduced bodyweight, and both LPS-EVs and SAL-EVs increased spleen expression of immune-relevant genes. NAc-infused LPS-EVs increased the expression of 10 immune-inflammatory genes. Whereas motivation increased similarly across test days in all groups, the effect of test days was more pronounced in mice that received peripheral or central LPS-EVs compared with other groups. This study provides causal evidence that increased EV levels impact physiological and behavioural processes and are of potential relevance to neuropsychiatric disorders.


Subject(s)
Extracellular Vesicles/genetics , Gene Expression Profiling/methods , Lipopolysaccharides/adverse effects , MicroRNAs/genetics , Stress, Psychological/genetics , Animals , Extracellular Vesicles/drug effects , Gene Expression Regulation/drug effects , Male , Mice , Organ Size/drug effects , Pilot Projects , Sequence Analysis, RNA , Spleen/drug effects , Spleen/metabolism , Stress, Psychological/psychology
3.
J Allergy Clin Immunol ; 143(1): 292-304.e8, 2019 01.
Article in English | MEDLINE | ID: mdl-29775636

ABSTRACT

BACKGROUND: Mutations in tetratricopeptide repeat domain 7A (TTC7A) and its mouse orthologue, Ttc7, result in a multisystemic disease, mostly affecting the epithelial barriers and immune system. Despite successful hematopoietic stem cell transplantation, ongoing progression of gastrointestinal manifestations can be life-threatening in TTC7A-deficient patients. OBJECTIVE: We sought to identify whether TTC7A mutations dysregulate epithelial cells only or whether a cell-intrinsic defect in lymphocytes or other cells contributes to disease manifestations. METHODS: Ttc7-mutated (Ttc7fsn/fsn) mice were crossed to generate double-mutant (Rag2-/-Ttc7fsn/fsn) and triple-mutant (Rag2-/-IL2rg-/-Ttc7fsn/fsn) mice. These models, together with bone marrow chimeras, were used to explore the role of adaptive and innate lymphocytes in the flaky skin phenotype. The effect of the Ttc7fsn/fsn mutation on stromal cells was tested in a xenograft model in conjunction with transcriptomic analysis of Ttc7fsn/fsn fibroblasts. RESULTS: We observed that the severity of epithelial hyperproliferation was accentuated by lymphocytes, whereas the phenotype was not induced by transfer of Ttc7-mutated hematopoietic cells. Furthermore, mice completely lacking the lymphocytic compartment were not protected from epithelial hyperproliferation. Ttc7-mutated mouse fibroblasts expressed increased transcript levels of insulin-like growth factor 1 (Igf1) and the antimicrobial protein regenerating islet-derived protein 3γ (Reg3γ). In a xenograft model Ttc7-mutated fibroblasts markedly increased epithelial proliferation of keratinocytes. Thus Ttc7-mutated fibroblasts were identified as potent instigators of epithelial hyperproliferation. CONCLUSION: Our results reveal a previously unsuspected fundamental cell-extrinsic role of Ttc7. We have identified potential candidates for molecularly targeted treatment strategies that will need to be evaluated in future preclinical studies.


Subject(s)
Cell Proliferation , Dermatitis/immunology , Epithelial Cells/immunology , Fibroblasts/immunology , Genetic Diseases, Inborn/immunology , Lymphocytes/immunology , Mutation , Proteins/immunology , Animals , BALB 3T3 Cells , Dermatitis/genetics , Dermatitis/pathology , Epithelial Cells/pathology , Fibroblasts/pathology , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Humans , Lymphocytes/pathology , Mice , Mice, Knockout , Proteins/genetics
4.
Blood Adv ; 1(15): 1101-1106, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-29296752

ABSTRACT

FAS-dependent apoptosis in Vδ1 T cells makes the latter possible culprits for the lymphadenopathy observed in patients with FAS mutations.Rapamycin and methylprednisolone resistance should prompt clinicians to look for Vδ1 T cell proliferation in ALPS-FAS patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...