Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 84(7): 073305, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902056

ABSTRACT

In recent years, the development of high power laser systems led to focussed intensities of more than 10(22) W/cm(2) at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 2): 026401, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20365659

ABSTRACT

The experimental data presented in this paper address the energy loss determination for argon at 4 MeV/u projectile energy in laser-generated carbon plasma covering a huge parameter range in density and temperature. Furthermore, a consistent theoretical description of the projectile charge state evolution via a Monte Carlo code is combined with an improved version of the CasP code that allows us to calculate the contributions to the stopping power of bound and free electrons for each projectile charge state. This approach gets rid of any effective charge description of the stopping power. Comparison of experimental data and theoretical results allows us to judge the influence of different plasma parameters.

3.
Phys Rev Lett ; 105(19): 195008, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21231179

ABSTRACT

The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.

4.
Rev Sci Instrum ; 80(3): 033301, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19334914

ABSTRACT

This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.

5.
Rev Sci Instrum ; 79(9): 093306, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19044406

ABSTRACT

This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm(2) microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O(+6)), emitted from the rear surface of a laser-irradiated 50 microm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

6.
Phys Rev Lett ; 101(5): 055004, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18764401

ABSTRACT

This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...