Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(38): eabq0304, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36149959

ABSTRACT

The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine ß-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Coral Reefs , Cystathionine beta-Synthase/genetics , Cysteine/genetics , Dinoflagellida/genetics , Genome , Mammals/genetics , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...