Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35746077

ABSTRACT

Nisin is a peptide that possesses potent antibacterial properties. This study evaluated the antibacterial activity of a nisin-doped adhesive against Streptococcus mutans, as well as its degree of conversion and microtensile bond strength (µTBS) to dentin. Nisin was added to the adhesive Adper Single Bond 2 (3M ESPE), resulting in four groups: Control Group (Single Bond 2); Group 1% (1 wt% nisin-incorporated), Group 3% (3 wt% nisin-incorporated) and Group 5% (5 wt% nisin-incorporated). Antibacterial activity against S. mutans was evaluated using colony-forming unit counts (CFU). The degree of conversion was tested using FTIR. Forty human teeth were restored for µTBS evaluation. Data were statistically analyzed with ANOVA and Tukey tests at α = 0.05. The nisin-doped adhesives, for all concentrations, exhibited a significant inhibition of the growth of S. mutans (p < 0.05); Incorporation of 5% and 3% nisin decreased the degree of conversion of the adhesive (p < 0.05). The µTBS (in MPa): Control Group­38.3 ± 2.3A, Group 1%­35.6 ± 2.1A, Group 3%­27.1 ± 1.6B and Group 5%­22.3 ± 1.0C. Nisin-doped adhesives exerted a bactericidal effect on S. mutans. The µTBS and degree of conversion of adhesive were not affected after incorporation of 1% nisin.

2.
Heliyon ; 6(5): e03925, 2020 May.
Article in English | MEDLINE | ID: mdl-32420491

ABSTRACT

OBJECTIVES: The present study examined a technique for reducing dentin permeability through the application of a calcium phosphate (CaP)-based desensitiser with a laser-assisted process and evaluated adhesive-dentin bond strength. Methods: Thirty dentin discs were divided into two groups according to whether the selected desensitiser (TeethMate; Kuraray Noritake) was used prior to dentin bonding. Each group was subdivided into three subgroups (n = 5): A- Adhesive (Single Bond Universal, 3M ESPE), AL- Adhesive + Laser (Nd:YAG 60 mJ) and LAL- Laser + Adhesive + Laser. Dentin permeability values (%) were recorded before and after desensitiser application. Resin composites were placed over the bonded specimens; the latter were aged prior to microtensile bond strength evaluation. Gelatinolytic activity within the hybrid layers was examined with in-situ zymography using confocal laser scanning microscopy. Data were analysed with ANOVA and Tukey test (α = 0.05). RESULTS: Significant differences in dentin permeability were identified for all groups (p = 0.00). Both laser treatment (p = 0.182) and desensitiser application (p = 0.687) did not significantly improve dentin bond strength. Ultrastructure of the resin-dentin interface identified presence of calcium phosphate within dentinal tubules. Laser treatment did not affect hybrid layer ultrastructure. Both treatment modalities (intratubular CaP occlusion and laser) had no influence on gelatinolytic activity within hybrid layers. CONCLUSION: Although intratubular CaP occlusion and laser treatment were effective in reducing dentin permeability, they did not affect bond strength, interfacial ultrastructure and gelatinolytic activity within hybrid layers. CLINICAL RELEVANCE: Treatment of etched dentin with Nd:YAG Laser at 60 mJ does not adversely affect collagen ultrastructure and gelatinolytic activity within the hybrid layer. The application of a calcium phosphate-based desensitiser to etch dentin does not affect dentin bond strength.

3.
J Dent ; 74: 79-89, 2018 07.
Article in English | MEDLINE | ID: mdl-29702152

ABSTRACT

OBJECTIVES: The water-associated attributes of resin-dentin interfaces created by contemporary adhesives are important determinants of bond integrity and stability. In the present work, these attributes were estimated from the perspectives of causality, to examine the behavior of the first and most-recently launched versions of universal adhesives when applied in either the etch-and-rinse mode or the self-etch mode. METHODS: The immediate cause of interfacial permeability and the time-dependent cause of water sorption were investigated in conjunction with the intermediate effect of interface degradation and the more long-term effect of loss of mechanical strength, before and after thermomechanical cycling. The results were compared with control etch-and-rinse and self-etch adhesives. RESULTS: Although the introduction of this new class of universal adhesives has brought forth significant changes to the dental adhesion arena, including more application options, reduced bonding armamentarium and increased user friendliness, the water-associated attributes that are critical for making resin-dentin bonds more durable to environmental challenges and less susceptible to degradation have remained unchanged at large, when compared with benchmarks established by former classes of adhesives. CONCLUSION: It appears that the current trend of adhesive development has brought forth significant changes but lacks the vigor that demarcates progress and technological sublimity. CLINICAL SIGNIFICANCE: The advent of the user friendly universal adhesives has brought forth significant changes to the dental adhesion arena. However, the elements that are critical for making resin-dentin bonds more durable to environmental challenges and less susceptible to degradation have remained unchanged at large.


Subject(s)
Dental Bonding/methods , Dentin-Bonding Agents/chemistry , Dentin/chemistry , Resin Cements/chemistry , Water/chemistry , Acid Etching, Dental/methods , Composite Resins/chemistry , Crowns , Dental Enamel , Dental Materials/chemistry , Humans , Materials Testing , Molar, Third , Permeability , Surface Properties , Tensile Strength
4.
Acta Biomater ; 67: 354-365, 2018 02.
Article in English | MEDLINE | ID: mdl-29274477

ABSTRACT

Intrafibrillar silicified collagen scaffold (SCS) is a promising biomaterial for bone regeneration because it promotes cell homing and angiogenesis in bone defects via monocyte modulation. In the present study, a rat femoral defect model was used to examine the contribution of monocyte signaling pathways to SCS modulation. Activation of the monocyte p38 signaling pathway by SCS resulted in monocyte differentiation into TRAP-positive mononuclear cells. These cells demonstrated increased secretion of SDF-1α, VEGFa and PDGF-BB, which, in turn, promoted homing of bone marrow stromal cells (BMSCs) and endothelial progenitor cells (EPCs), as well as local vascularization. Monocyte differentiation and secretion were blocked after inhibition of the p38 pathway, which resulted in reduction in cell homing and angiogenesis. Taken together, these novel findings indicate that the p38 signaling pathway is crucial in SCS-modulated monocyte differentiation and secretion, which has a direct impact on SCS-induced bone regeneration. STATEMENT OF SIGNIFICANCE: Intrafibrillar silicified collagen scaffold (SCS) is a promising biomaterial for bone regeneration. The present work demonstrates that SCS possesses favorable bone regeneration potential in a rat femoral defect model. The degrading scaffold modulates monocyte differentiation and release of certain cytokines to recruit MSCs and EPCs, as well as enhances local vascularization by activating the p38 MAPK signaling pathway. These findings indicate that SCS contributes to bone defect regeneration by stimulating host cell homing and promoting local angiogenesis and osteogenesis without the need for loading cytokines or xenogenous stem cells.


Subject(s)
Bone Regeneration/physiology , Fibrillar Collagens/pharmacology , MAP Kinase Signaling System/drug effects , Monocytes/enzymology , Silicon Dioxide/chemistry , Tissue Scaffolds/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Bone Regeneration/drug effects , Cytokines/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Femur/pathology , Male , Mice, Inbred C57BL , Monocytes/drug effects , Osteogenesis/drug effects , Rats , Rats, Sprague-Dawley
5.
Sci Rep ; 7(1): 17422, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234138

ABSTRACT

The present study evaluated the effect of different high-power-laser surface treatments on the bond strength between resin cement and disilicate ceramic. Lithium disilicate ceramic specimens with truncated cones shape were prepared and divided into 5 groups: HF (hydrofluoric acid-etching), Er:YAG laser + HF, Graphite + Er:YAG laser + HF, Nd:YAG laser + HF, and Graphite + Nd:YAG laser + HF. The treated ceramic surfaces were characterized with scanning electron microscopy and surface roughness measurement. Hourglasses-shaped ceramic- resin bond specimens were prepared, thermomechanically cycled and stressed to failure under tension. The results showed that for both the factors "laser" and "graphite", statistically significant differences were observed (p < 0.05). Multiple-comparison tests performed on the "laser" factor were in the order: Er:YAG > Nd:YAG (p < 0.05), and on the "graphite" factor were in the order: graphite coating < without coating (p < 0.05). The Dunnett test showed that Er:YAG + HF had significantly higher tensile strength (p = 0.00). Higher surface roughness was achieved after Er:YAG laser treatment. Thus Er:YAG laser treatment produces higher bond strength to resin cement than other surface treatment protocols. Surface-coating with graphite does not improve bonding of the laser-treated lithium disilicate ceramic to resin cement.

6.
J Dent ; 66: 52-61, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28844892

ABSTRACT

OBJECTIVES: To evaluate the effect of intrinsic water permeation on the microtensile bond strengths of different adhesive systems to dentine and the quality of resin-dentine interfaces. METHODS: Ninety-six non-carious human third molars were divided into 4 groups: Clearfil S3 Bond Plus (CSBP; Kuraray); Clearfil S3 Bond (C3S; Kuraray); iBond Self-Etch (IB; Heraeus-Kulzer) and Prime&Bond NT (PB, control etch-and-rinse adhesive, Dentply-Sirona). For each adhesive, specimens from one subgroup (N=10) were bonded using zero pulpal pressure, while specimens from the other subgroup (N=10) were bonded using 15cm water pressure (PP). Each bonded tooth was sectioned into 1×1mm sticks and stressed to failure. Data were analysed using two-way ANOVA and Holm-Sidak pairwise comparisons to examine the effects of "adhesive", "pulpal pressure" and their interaction on bond strength (α=0.05). Representative fractured sticks were examined by SEM. The remaining tooth slabs in each subgroup were used for TEM and CLSM. RESULTS: Microtensile bond strengths (mean±SD; in MPa) were: 33.4±6.9 (CSBP), 33.2±4.7 (CSBP-PP), 35.0±8.6 (C3S), 25.5±7.3 (C3S-PP), 18.4±4.0 (IB), 16.5±6.9 (IB-PP), 28.2±5.5 (PB), 20.5±7.2 (PB-PP). "Adhesive-type" (P<0.001), "pulpal-pressure" (P<0.001) and their interactions (P<0.001) significantly affected bond strength results. No difference between no-PP and PP subgroups was found for CSBP and IB (P>0.05). Water droplets were identified along the resin-dentine interface for IB, IB-PP and C3S-PP. CONCLUSION: IB exhibits water sensitivity when bonding is performed with/without pulpal pressure. C3S exhibits water sensitivity when bonding is performed with pulpal pressure. CSBP does not exhibit water sensitivity when bonding is performed with/without pulpal pressure. CLINICAL SIGNIFICANCE: Intrinsic water permeation during bonding procedures significantly affects bond strength results and the resin-dentine interface of contemporary single-bottle self-etch dentine adhesive systems.


Subject(s)
Acid Etching, Dental/methods , Dental Bonding/methods , Dental Materials/chemistry , Dentin-Bonding Agents/chemistry , Dentin/drug effects , Resin Cements/chemistry , Water/chemistry , Dental Pulp , Dental Stress Analysis , Humans , Hydrostatic Pressure , Materials Testing , Methacrylates/chemistry , Molar, Third , Polymethacrylic Acids/chemistry , Surface Properties , Tensile Strength
7.
Sci Rep ; 6: 37799, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886272

ABSTRACT

Tooth-coloured plastic dental fillings secured by adhesives to tooth structures are widely used to fix decayed teeth. Whereas laboratory tests demonstrate rapid deterioration of the ability of the adhesives to stick to dentine, clinical studies show that these fillings are relatively durable. This discrepancy suggests that the parameters used for simulating bond degradation in the laboratory setting do not correlate well with clinical outcomes. The present study examined the long-term tensile bond strength of resin composite fillings performed in real life and under different laboratory-simulated bonding conditions to identify parameters that may be used to forecast the durability of adhesive bonds created in dentine. Fillings placed in vivo were subjected to different periods of intraoral function. In vitro specimens were bonded based on whether simulated pulpal pressure (SPP) or thermomechanical cycling was implemented, and how long the completed fillings were stored in water. Thermomechanical cycling used in combination with long-term water ageing are useful in forecasting the decline in strength of resin-dentine bonds created in vivo. These parameters should be adopted for future evaluations. Conversely, the use of SPP does not appear to be a significant parameter in the simulation of long-term clinical deterioration of bond integrity.


Subject(s)
Dental Bonding , Dentin/metabolism , Laboratories , Dentin-Bonding Agents , Forecasting , Microscopy, Electron, Scanning
8.
Dent Mater ; 31(12): 1510-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26494267

ABSTRACT

OBJECTIVES: In pulpal revascularization, a protective material is placed coronal to the blood clot to prevent recontamination and to facilitate osteogenic differentiation of mesenchymal stem cells to produce new dental tissues. Although mineral trioxide aggregate (MTA) has been the material of choice for clot protection, it is easily displaced into the clot during condensation. The present study evaluated the effects of recently introduced calcium silicate cements (Biodentine and TheraCal LC) on the viability and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by comparing with MTA Angelus. METHODS: Cell viability was assessed using XTT assay and flow cytometry. The osteogenic potential of hDPSCs exposed to calcium silicate cements was examined using qRT-PCR for osteogenic gene expressions, alkaline phosphatase enzyme activity, Alizarin red S staining and transmission electron microscopy of extracellular calcium deposits. Parametric statistical methods were employed for analyses of significant difference among groups, with α=0.05. RESULTS: The cytotoxic effects of Biodentine and TheraCal LC on hDPSCs were time- and concentration-dependent. Osteogenic differentiation of hDPSCs was enhanced after exposure to Biodentine that was depleted of its cytotoxic components. This effect was less readily observed in hDPSCs exposed to TheraCal LC, although both cements supported extracellular mineralization better than the positive control (zinc oxide-eugenol-based cement). SIGNIFICANCE: A favorable tissue response is anticipated to occur with the use of Biodentine as a blood clot-protecting material for pulpal revascularization. Further investigations with the use of in vivo animal models are required to validate the potential adverse biological effects of TheraCal LC on hDPSCs.


Subject(s)
Aluminum Compounds/chemistry , Bismuth/chemistry , Calcium Compounds/chemistry , Dental Cements/chemistry , Dental Pulp/blood supply , Dental Pulp/cytology , Osteogenesis/drug effects , Oxides/chemistry , Root Canal Filling Materials/chemistry , Silicates/chemistry , Stem Cells/drug effects , Adolescent , Adult , Aluminum Compounds/toxicity , Bismuth/toxicity , Calcium Compounds/toxicity , Cell Survival , Dental Cements/toxicity , Drug Combinations , Flow Cytometry , Humans , Materials Testing , Oxides/toxicity , Root Canal Filling Materials/toxicity , Silicates/toxicity , Zinc Oxide-Eugenol Cement/chemistry , Zinc Oxide-Eugenol Cement/toxicity
9.
J Dent ; 43(5): 597-604, 2015 May.
Article in English | MEDLINE | ID: mdl-25593001

ABSTRACT

OBJECTIVES: To evaluate the effectiveness of TRUShape® 3D Conforming Files, compared with Twisted Files, in reducing bacteria load from root canal walls, in the presence or absence of irrigant agitation. METHODS: Extracted human premolars with single oval-shaped canals were infected with Enterococcus faecalis. Teeth in Group I (N=10; NaOCl and QMix® 2in1 as respective initial and final irrigants) were subdivided into 4 subgroups: (A) TRUShape® instrumentation without irrigant activation; (B) TRUShape® instrumentation with sonic irrigant agitation; (C) Twisted Files without irrigant agitation; (D) Twisted Files with sonic irrigant agitation. To remove confounding factor (antimicrobial irrigants), teeth in Group II (N=10) were irrigated with sterile saline, using the same subgroup designations. Specimens before and after chemomechanical débridement were cultured for quantification of colony-forming units (CFUs). Data from each group were analyzed separately using two-factor ANOVA and Holm-Sidak multiple comparison (α=0.05). Canal wall bacteria were qualitatively examined using scanning electron microscopy (SEM) and light microscopy of Taylor-modified Brown and Brenn-stained demineralised sections. RESULTS: CFUs from subgroups in Group I were not significantly different (P=0.935). For Group II, both file type (P<0.001) and irrigant agitation (P<0.001) significantly affected log-reduction in CFU concentrations. The interaction of these two factors was not significant (P=0.601). Although SEM showed reduced canal wall bacteria, bacteria were present within dentinal tubules after rotary instrumentation, as revealed by light microscopy of longitudinal root sections. CONCLUSIONS: TRUShape® files removed significantly more canal wall bacteria than Twisted Files when used without an antibacterial irrigant; the latter is required to decontaminate dentinal tubules. CLINICAL SIGNIFICANCE: Root canal disinfection should not be focused only on a mechanistic approach. Rather, the rational choice of a rotary instrumentation system should be combined with the use of well-tested antimicrobial irrigants and delivery/agitation techniques to establish a clinically realistic chemomechanical débridement protocol.


Subject(s)
Alloys , Dental Instruments/microbiology , Dental Pulp Cavity/microbiology , Root Canal Preparation/instrumentation , Root Canal Therapy/instrumentation , Anti-Infective Agents/pharmacology , Bacterial Load , Bicuspid/microbiology , Biguanides/pharmacology , Dental Pulp Cavity/drug effects , Dentin/drug effects , Dentin/microbiology , Disinfection/instrumentation , Disinfection/methods , Enterococcus faecalis/drug effects , Enterococcus faecalis/pathogenicity , Humans , Polymers/pharmacology , Root Canal Irrigants/pharmacology , Root Canal Preparation/methods , Root Canal Therapy/methods , Rotation , Sodium Hypochlorite/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL