Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Type of study
Publication year range
1.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893300

ABSTRACT

All-inorganic metal halide perovskite is promising for highly efficient and thermally stable perovskite light-emitting diodes (PeLEDs). However, there is still great room for improvement in the film quality, including low coverage and high trap density, which play a vital role in achieving high-efficiency PeLEDs. In this work, lead acetate (Pb(Ac)2) was introduced into the perovskite precursor solution as an additive. Experimental results show that perovskite films deposited from a one-step anti-solvent free solution process with increased surface coverage and reduced trap density were obtained, leading to enhanced photoluminescence (PL) intensity. More than that, the valence band maximum (VBM) of perovskite films was reduced, bringing about a better energy level matching the work function of the hole-injection layer (HIL) poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS), which is facilitated for the hole injection, leading to a decrease in the turn-on voltage (Vth) of PeLEDs from 3.4 V for the control device to 2.6 V. Finally, the external quantum efficiency (EQE) of the sky blue PeLEDs (at 484 nm) increased from 0.09% to 0.66%. The principles of Pb(Ac)2 were thoroughly investigated by using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). This work provides a simple and effective strategy for improving the morphology of perovskite and therefore the performance of PeLEDs.

2.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446637

ABSTRACT

Defects in perovskite films are one of the main factors that affect the efficiency and stability of halide perovskite solar cells (PSCs). Uncoordinated ions (such as Pb2+, I-) act as trap states, causing the undesirable non-radiative recombination of photogenerated carriers. The formation of Lewis acid-base adducts in perovskite directly involves the crystallization process, which can effectively passivate defects. In this work, 4-(trifluoromethyl)-1H-imidazole (THI) was introduced into the perovskite precursor solution as a passivation agent. THI is a typical amphoteric compound that exhibits a strong Lewis base property due to its lone pair electrons. It coordinates with Lewis acid Pb2+, leading to the reduction in defect density and increase in crystallinity of perovskite films. Finally, the power conversion efficiency (PCE) of PSC increased from 16.49% to 18.97% due to the simultaneous enhancement of open-circuit voltage (VOC), short circuit current density (JSC) and fill factor (FF). After 30 days of storage, the PCE of the 0.16 THI PSC was maintained at 61.9% of its initial value, which was 44.3% for the control device. The working mechanism of THI was investigated. This work provides an attractive alternative method to passivate the defects in perovskite.


Subject(s)
Lead , Lewis Acids , Calcium Compounds , Imidazoles , Lewis Bases
3.
Polymers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683924

ABSTRACT

A π-conjugated small molecule N, N'-bis(naphthalen-1-yl)-N, N'-bis(phenyl)benzidine (NPB) was introduced into poly(9-vinylcarbazole) (PVK) as a hole transport layer (HTL) in inverted perovskite solar cells (PSCs). The NPB doping induces a better perovskite crystal growth, resulting in perovskite with a larger grain size and less defect density. Thus, the VOC, JSC, and FF of the PSC were all enhanced. Experimental results show that it can be ascribed to the reduction of surface roughness and improved hydrophilicity of the HTL. The effect of NPB on the aggregation of PVK was also discussed. This work demonstrates the great potential of PVK as the HTL of PSCs and provides an attractive alternative for HTL to realize high-efficiency PSCs.

4.
Polymers (Basel) ; 14(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160390

ABSTRACT

Nonradiative recombination losses caused by defects in the perovskite layer seriously affects the efficiency and stability of perovskite solar cells (PSCs). Hence, defect passivation is an effective way to improve the performance of PSCs. In this work, trichloromelamine (TCM) was used as a defects passivator by adding it into the perovskite precursor solution. The experimental results show that the power conversion efficiency (PCE) of PSC increased from 18.87 to 20.15% after the addition of TCM. What's more, the environmental stability of PSCs was also improved. The working mechanism of TCM was thoroughly investigated, which can be ascribed to the interaction between the -NH- group and uncoordinated lead ions in the perovskite. This work provides a promising strategy for achieving highly efficient and stable PSCs.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-923477

ABSTRACT

Objective @#To explore the medication law and mechanism of traditional Chinese medicine compounds in the treatment of periodontal disease through data mining, network pharmacology, and molecular docking. @* Methods@#First, data mining was used to search single medicinal materials for the treatment of periodontal disease, and the active components and their action targets were screened. Second, the disease target database was employed to download the targets related to the pathogenesis of periodontal disease, map them with the action targets of traditional Chinese medicine, and obtain the targets that are considered potential targets of traditional Chinese medicine in the treatment of periodontal disease. Potential targets were analyzed for gene ontology function and signaling pathway. They were then screened to obtain the key targets for the treatment of periodontal disease. Finally, the active components were docked with key targets.@* Results@# Among the traditional Chinese medicine prescriptions for the treatment of periodontal disease, Shudihuang, Mudanpi, Danggui, Fuling, Jinyinhua, Shanyao and Zhimu had the highest frequencies. Forty-three active components and 118 action targets were screened, and 52 potential targets were obtained by intersection with 856 disease targets. The molecular functions and biological processes in which potential targets may participate mainly focus on vitamin D biosynthesis and RNA polymerase Ⅱ regulation and involve 96 signaling pathways. Through the analysis of network topology parameters, 11 key targets were obtained. The results of molecular docking showed that the active components and RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53), and mitogen-activated protein kinase-1 (MAPK-1) have good binding activity. @* Conclusion @#Traditional Chinese medicine compounds may play a role in the treatment of periodontal disease by inhibiting alveolar bone absorption, have antibacterial and anti-inflammatory properties, and promote tissue repair. The effective treatment of periodontal disease by traditional Chinese medicine compounds provides a more scientific reference to the sustainable development of traditional Chinese medicine.

6.
Sci Rep ; 9(1): 18232, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796835

ABSTRACT

Enhancing the injection of electron is an effective strategy to improve the performance of polymer light-emitting diodes (PLEDs). In this work, we reported a 286% improvement in current efficiency (CE) of PLEDs by using double-layered alkali halide electron injection layer (EIL) NaCl/LiF instead of LiF. A significant enhancement of electron injection was observed after inserting the NaCl layer. To understand the mechanism of such improvement, the devices with KBr/LiF and CsF/LiF as EILs were also investigated. Experimental results show that metal cation migrated under the effect of built-in electric field (Vbi), which plays the main role on the improvement of electron injection in PLEDs.

7.
Sci Rep ; 9(1): 15441, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31659201

ABSTRACT

The morphology of perovskite light-absorption layer plays an important role in the performance of perovskite solar cells (PSCs). In this work, BiFeO3 (BFO) nanostructures were used as additive for CH3NH3PbI3 (MAPbI3) via anti-solvent method. The addition of BFO nanostructures greatly enhanced the crystallinity, grain size and film uniformity of MAPbI3. As a result, the charge carrier mobility and electron diffusion length increased, leading to the increase of the short circuit current (JSC) of PSCs. This work provides a very simple but effective approach to improve the morphology of perovskite layer for efficient PSCs.

8.
Onco Targets Ther ; 12: 4721-4728, 2019.
Article in English | MEDLINE | ID: mdl-31417273

ABSTRACT

The microbiota inhabiting the oral cavity is a complex ecosystem and responsible for resisting pathogens, maintaining homeostasis, and modulating the immune system. Some components of the oral microbiota contribute to the etiology of some oral diseases. Accumulating evidence suggests that the human oral microbiota is implicated in the development and progression of gastrointestinal cancer. In this review, we described the current understanding of possible roles and mechanisms of oral microbiota in the gastrointestinal cancers studied to date. The perspectives for oral microbiota as the biomarkers for early detection and new therapeutic targets were also discussed.

9.
Polymers (Basel) ; 11(1)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30960131

ABSTRACT

The commonly used electron transport material (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) for perovskite solar cells (PSC) with inverted planar structures suffers from properties such as poor film-forming. In this manuscript, we demonstrate a simple method to improve the film-forming properties of PCBM by doping PCBM with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the electron transport layer (ETL), which effectively enhances the performance of CH3NH3PbI3 based solar cells. With 5 wt % F8BT in PCBM, the short circuit current (JSC) and fill factor (FF) of PSC both significantly increased from 17.21 ± 0.15 mA·cm-2 and 71.1 ± 0.07% to 19.28 ± 0.22 mA·cm-2 and 74.7 ± 0.21%, respectively, which led to a power conversion efficiency (PCE) improvement from 12.6 ± 0.24% to 15 ± 0.26%. The morphology investigation suggested that doping with F8BT facilitated the formation of a smooth and uniform ETL, which was favorable for the separation of electron-hole pairs, and therefore, an improved performance of PSC.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-777740

ABSTRACT

Objective @#To investigate the effect of different concentrations of MTA on the proliferation and differentiation of stem cells from the apical papilla (SCAP) and the potential of the SCAP to differentiate into odontoblasts.@*Methods@#SCAP were cultured in different concentrations of mineral trioxide aggregate(MTA). MTA experimental group with concentration of 0.01 mg/mL, 0.02 mg/mL, 0.1 mg/mL, 0.2 mg/mL, 1 mg/mL, 2 mg/mL, 10 mg/mL and 20 mg/mL were prepared. The number of cells at 1 day, 3 days, 5 days and 7 days were measured via a CCK-8 assay to observe the effect of MTA on SCAP proliferation. Real-time PCR was used to detect the gene expression changes. Cells cultured in alpha MEM culture containing 15% FBS without MTA were set as the control group.@*Results @#When cultured for 1 d, statistically significant differences in the promotion of in vitro proliferation of SCAP were not observed between each MTA experimental group and the control group (P>0.05). When cultured for 3 d, 5 d and 7 d, the 0.01 mg/mL MTA group presented obvious promotion of SCAP proliferation compared with the control group (P<0.05), whereas the 0.02 mg/mL, 0.1 mg/mL, 0.2 mg/mL, 1 mg/mL groups did not presented differences with the control group (P>0.05). The in vitro proliferation of the 2 mg/mL, 10 mg/mL and 20 mg/mL groups was lower than that of the control group (P<0.05). Real-time PCR detection showed that the expression levels of DSPP (t=-11.12, P < 0.05) and Runx2 (t=-10.62, P < 0.05) in the experimental group treated with 0.01 mg/mL MTA for 7 days were higher than those in the control group. @*Conclusion @#The 0.01 mg/mL concentration of MTA significantly promotes the proliferation of SCAP and shows the best ability to induce osteogenic and odontoblast differentiation in the SCAP, whereas high concentrations of MTA inhibited the proliferation of SCAP.

11.
ACS Appl Mater Interfaces ; 9(22): 18399-18404, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28521088

ABSTRACT

The polar solvent dimethylformamide (DMF) was used to treat the emissive layer (EML) of polymer light-emitting diodes (PLEDs). The formation of a dipole layer at the EML/cathode interface after DMF treatment was proven, which led to a reduction of the electron-injection barrier. The dipole layer was formed mainly because of the intrinsic polarity of DMF. By control of the residue of DMF on the EML, a maximum enhancement of the peak luminous efficiency from 5.33 ± 0.57 to 12.05 ± 1.2 cd/A was achieved. This study suggests that solvent treatment is a simple and efficient approach to realizing highly efficient PLEDs with a high-work-function metal cathode.

12.
Molecules ; 22(4)2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28338627

ABSTRACT

This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.


Subject(s)
Calcium Compounds , Oxides , Solar Energy , Titanium , Spectrum Analysis , Thermodynamics
13.
ACS Omega ; 2(11): 7666-7671, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-31457324

ABSTRACT

Uniform and dense perovskite films were realized by the one-step solution-processing method combined with toluene washing. The influence of the delay time applied for toluene washing on the film quality of CH3NH3PbI3 (MAPbI3) was investigated in a comprehensive manner. The optimal delay time was experimentally observed at the critical point when the color of the film changes from transparent to hazy. A detailed X-ray diffraction study suggested that such a color change was caused by the emergence of the MAPbI3 crystal nucleus. This finding provides a convenient method to determine the optimal time accurately. With the optimal delay time, the most uniformly distributed MAPbI3 grains with the largest average grain size and the smoothest surface were obtained. Owing to the realization of homogeneous MAPbI3 films combined with full coverage of perovskite on the substrate achieved by toluene washing at the critical point, open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of 1.11 V, 18.24 mA/cm2, 77.47, and 15.54% were obtained.

14.
Sci Rep ; 6: 25810, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27165729

ABSTRACT

One of the challenges toward electrically driven organic lasers is the huge optical loss associated with the contact of electrodes and organic gain medium in device. We demonstrated a significant reduction of the optical loss by using our newly developed conjugated polyelectrolytes (CPE) PPFN(+)Br(-) as interlayer between gain medium and electrode. The optically pumped amplified spontaneous emission (ASE) was observed at very low threshold for PFO as optical gain medium and up to 37 nm thick CPE as interlayer in device configuration, c.f., a 5.7-fold ASE threshold reduction from pump energy 150 µJ/cm(2) for ITO/PFO to 26.3 µJ/cm(2) for ITO/PPFN(+)Br(-)/PFO. Furthermore, ASE narrowing displayed at pump energy up to 61.8 µJ/cm(2) for device ITO/PEDOT:PSS/PFO/PPFN(+)Br(-)/Ag, while no ASE was observed for the reference devices without CPE interlayer at pump energy up to 240 µJ/cm(2). The optically pumped lasing operation has also been achieved at threshold up to 45 µJ/cm(2) for one-dimensional distributed feedback laser fabricated on ITO etched grating in devices with CPE interlayer, demonstrating a promising device configuration for addressing the challenge of electrically driven organic lasers.

15.
Nanoscale Res Lett ; 10: 192, 2015.
Article in English | MEDLINE | ID: mdl-25977663

ABSTRACT

We reported a simple and effective way of fabricating one-dimensional (1D) graphene oxide nanoscrolls (GONS) from graphene oxide (GO) sheets through shock cooling by liquid nitrogen. The corresponding mechanism of rolling was proposed. One possibility is the formation of ice crystals during the shock cooling process in liquid nitrogen to be the driving force. The other might be due to the uneven stress of the sheets inside or outside ice during the lyophilization. After reducing, graphene nanoscrolls (GNS) exhibited good structural stability, high specific surface area, and high specific capacitance. The capacitance properties were investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrical impedance spectroscopy. A specific capacity of 156 F/g for the GNS at the current density of 1.0 A/g was obtained comparing with the specific capacity of 108 F/g for graphene sheets. Those results indicated that GNS-based rolling structure could be a kind of promising electrode material for supercapacitors and batteries.

16.
Phys Chem Chem Phys ; 17(12): 8106-12, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25726960

ABSTRACT

Manipulating Ag nanowire (AgNW) assembly to tailor the opto-electrical properties and surface morphology could improve the performance of next-generation transparent conductive electrodes. In this paper, we demonstrated a water-bath assisted convective assembly process at the temporary water/alcohol interface for fabricating hierarchical aligned AgNW electrodes. The convection flow plays an important role during the assembly process. The assembled AgNW film fabricated via three times orthogonal dip-coating at a water-bath temperature of 80 °C has a sheet resistance of 11.4 Ω sq(-1) with 89.9% transmittance at 550 nm. Moreover, the root mean square (RMS) of this assembled AgNW film was only 15.6 nm which is much lower than the spin-coated random AgNW film (37.6 nm) with a similar sheet resistance. This facile assembly route provides a new way for manufacturing and tailoring ordered nanowire-based devices.

17.
Opt Lett ; 39(11): 3219-22, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24876017

ABSTRACT

A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

18.
Opt Lett ; 37(9): 1556-8, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22555736

ABSTRACT

An InGaN/GaN blue light-emitting diode (LED) structure and an InGaN/GaN blue-violet LED structure were grown sequentially on the same sapphire substrate by metal-organic chemical vapor deposition. It was found that the insertion of an n-type AlGaN layer below the dual blue-emitting active layers showed better spectral stability at the different driving current relative to the traditional p-type AlGaN electron-blocking layer. In addition, color rendering index of a Y3Al5O12:Ce3+ phosphor-converted white LED based on a dual blue-emitting chip with n-type AlGaN reached 91 at 20 mA, and Commission Internationale de L'Eclairage coordinates almost remained at the same point from 5 to 60 mA.

19.
Opt Lett ; 36(8): 1521-3, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21499410

ABSTRACT

In order to promote a polymer LED (PLED), we fabricated and introduced an ultrathin nickel oxide (NiO) buffer layer (<10 nm) between the indium tin oxide (ITO) anode and the poly (3, 4-ethylenedioxythiophene) hole injection layer in the PLED. The NiO buffer layer was easily formed on the ITO anode by electron-beam deposition of a nickel (Ni) metal source and an oxygen plasma treatment process. As a result, the PLED device with the NiO buffer layer on its ITO anode had the same turn-on voltage as conventional PLED devices without the NiO buffer layer, and the luminance of the PLED device with the NiO buffer layer was doubled, compared with the conventional PLED devices without the NiO buffer layer. Improvement of the optoelectronic performance of the PLED can be attributed to the increase of the current driven into the diode, resulting from the NiO buffer layer, which can enhance the hole injection and balance the injection of the two types of carriers (holes and electrons). Thus it is an excellent choice to introduce the NiO buffer layer onto the ITO anode of the PLED devices in order to enhance the optoelectronic performance of PLED devices.

20.
Langmuir ; 26(7): 5213-6, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-19883106

ABSTRACT

A simple and robust process has been developed to control the growth of the organic nanowires in situ self-assembled in a polymer matrix, lift off the nanostructure/polymer composite film from the mother substrate for storage and transfer, and remove the polymer host prior to usage. Every step was completed through a solution process, which ensured the process's simplicity and low cost. The realization of large-sized nanowire/polymer composite film demonstrated the necessary process scalability required by the industrial roll-to-roll manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL
...