Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133940

ABSTRACT

A double-sided electron energy analyzer is developed for studies of magnetic reconnection. It can measure electron energy distribution functions along two directions opposite to each other at the same time. Each side is composed of a floating reference grid, an energy selector grid, and a collector plate. The voltage of the selector grid is swept from -40 to 0 V with respect to the reference grid with a frequency of 1 MHz. This fast sweeping is required to resolve sub-Alfvénic changes in plasma quantities of the Magnetic Reconnection Experiment, where the typical Alfvénic time is a few microseconds. The reliability of the energy analyzer is checked in Maxwellian plasmas away from the reconnection region. In this case, the electron temperature computed from the electron energy distribution function agrees with measurements of a reference triple Langmuir probe. When it is located near the reconnection region, the temperatures of the tail electron population from both sides, facing into the electron flow and facing away from it, exceed the bulk electron temperature measured by the Langmuir probe by a factor of about 2.

2.
Rev Sci Instrum ; 83(1): 013510, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22299954

ABSTRACT

This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

SELECTION OF CITATIONS
SEARCH DETAIL
...