Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 338: 186-193, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28554110

ABSTRACT

Coking wastewater contains many types of toxic and hazardous pollutants that have serious toxic effects on human beings as well as aquatic organisms. However, few studies have evaluated the detoxification efficiencies of the treatment processes that are extensively performed in operational coking wastewater treatment plants (WWTPs). This study investigates the detoxification efficiencies of a combined anaerobic-anoxic-oxic (A2O)-ozonation and A2O-Fenton oxidation process in two coking WWTPs using an acute immobilization test for Daphnia magna, acute toxicity test for adult zebrafish, embryo toxicity test for zebrafish and the comet assay. The raw coking wastewaters displayed high acute daphnia and fish toxicity, zebrafish embryo toxicity and genotoxicity. The A2O processing unit effectively removed acute and embryo toxicity, but not genotoxicity. In addition, the A2O effluent quality did not meet the integrated wastewater discharge standard in China (GB18918-2002). The ozonation and Fenton oxidation units used as post-treatments in these two plants not only treated the coking wastewater to the discharge standard but also reduced the genotoxicity. However, the final effluents still showed potential genotoxicity after high dilution. The results suggest that the discharge of treated coking wastewater probably poses potential risks to human health and the environment even if it met regulatory standards.


Subject(s)
Coke/analysis , Oxygen/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Anaerobiosis , Animals , Comet Assay , Embryo, Nonmammalian/drug effects , Inactivation, Metabolic , Oxidation-Reduction , Toxicity Tests, Acute , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/embryology
2.
Ecotoxicol Environ Saf ; 142: 363-368, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28437728

ABSTRACT

The anaerobic-anoxic-oxic (A/A/O) process is the commonly used biological wastewater treatment process, especially for the coking wastewater. However, limit is known about its ability in bio-toxicity removal from wastewater. In this study, we evaluated the performance of A/A/O process in bio-toxicity removal from the coking wastewater, using two test species (i.e. crustacean (Daphnia magna) and zebra fish (Danio rerio)) in respect of acute toxicity, oxidative damage and genotoxicity. Our results showed that the acute toxicity of raw influent was reduced gradually along with A/A/O process and the effluent presented no acute toxicity to Daphnia magna (D. magna) and zebra fish. The reactive oxygen species (ROS) level in D. magna and zebra fish was promoted by the effluent from each tank of A/A/O process, showing that coking wastewater induced oxidative damage. Herein, the oxidative damage to D. magna was mitigated in the oxic tank, while the toxicity to zebra fish was reduced in the anoxic tank. The comet assays showed that genotoxicity to zebra fish was removed stepwise by A/A/O process, although the final effluent still presented genotoxicity to zebra fish. Our results indicated that the A/A/O process was efficient in acute toxicity removal, but not so effective in the removal of other toxicity (e.g. oxidative damage and genotoxicity). Considering the potential risks of wastewater discharge, further advanced toxicity mitigation technology should be applied in the conventional biological treatment process, and the toxicity index should be introduced in the regulation system of wastewater discharge.


Subject(s)
Coke/statistics & numerical data , Mutagens/toxicity , Oxidative Stress/drug effects , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Water Purification/methods , Aerobiosis , Anaerobiosis , Animals , Coke/analysis , DNA Damage , Daphnia/drug effects , Daphnia/metabolism , Lethal Dose 50 , Toxicity Tests, Acute , Wastewater/analysis , Water Pollutants, Chemical/analysis , Zebrafish/genetics , Zebrafish/metabolism
3.
Chemosphere ; 168: 1285-1292, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27919537

ABSTRACT

In China, a considerable part of industrial wastewater effluents are discharged into the municipal wastewater treatment plants (WWTPs) after pretreatment in their own wastewater treatment plants. Even though the industrial effluents meet the professional emission standards, many micro-pollutants still remained, and they could be resistant in the municipal WWTPs with conventional activated sludge process. Pigment wastewater was chosen in this study, and the acute toxicity reduction and identification of the pigment-contaminated wastewater treated by the conventional anaerobic-anoxic-oxic (A/A/O) process were evaluated. Results indicated that the raw pigment-contaminated wastewater was acutely toxic to Photobacterium phosphoreum (P. phosphoreum), Daphnia magna (D. magna) and Danio rerio (D. rerio). The acute toxicity was decreased in some degree after A/A/O treatment, but the final effluent still exhibited acute toxicity to D. magna and D. rerio with the toxic units (TU) of 1.1 and 2.0, respectively. Chemical analyses showed the presence of various refractory and toxic nitrogen-containing polycyclic and heterocyclic compounds in the pigment-contaminated wastewater. Toxicity identification by combining chemical analyses and correlation analysis showed that N-containing refractory organic toxicants were the main toxicity source for the pigment-contaminated wastewater, and several toxicants showed significant correlation with P. phosphoreum and D. magna. This study indicated that the A/A/O process was not efficient for pigment-contaminated wastewater treatment, and it was irradiative for technology improvement in the WWTPs receiving pretreated industrial wastewater effluents.


Subject(s)
Coloring Agents/toxicity , Waste Disposal, Fluid/methods , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Anaerobiosis , Animals , China , Daphnia , Industrial Waste , Oxygen , Photobacterium/drug effects , Toxicity Tests, Acute , Zebrafish
4.
Chemosphere ; 154: 1-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27037768

ABSTRACT

Acrylonitrile (ACN) wastewater generated during ACN production has been reported to be toxic to many aquatic organisms. However, few studies have evaluated toxicity removal of ACN wastewater during and after the treatment process. In this study, the detoxication ability of an ACN wastewater treatment plant (WWTP) was evaluated using Daphnia magna, Danio rerio and zebrafish embryo. This ACN WWTP has a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process upgraded from the traditional anaerobic oxic (A/O) process. Moreover, the potential toxicants of the ACN wastewaters were identified by gas chromatography-mass spectrometry (GC-MS). The raw ACN wastewater showed high acute and embryo toxicity. 3-Cyanopyridine, succinonitrile and a series of nitriles were detected as the toxic contributors of ACN wastewater. The A/O process was effective for the acute and embryo toxicity removal, as well as the organic toxicants. However, the A/O effluent still showed acute and embryo toxicity which was attributed by the undegraded and the newly generated toxicants during the A/O process. The residual acute and embryo toxicity as well as the organic toxicants in the A/O effluent were further reduced after going through the downstream ABFT process system. The final effluent displayed no significant acute and embryo toxicity, and less organic toxicants were detected in the final effluent. The upgrade of this ACN WWTP results in the improved removal efficiencies for acute and embryo toxicity, as well as the organic toxicants.


Subject(s)
Acrylonitrile/isolation & purification , Acrylonitrile/toxicity , Embryo, Nonmammalian/drug effects , Waste Management , Wastewater/chemistry , Zebrafish/embryology , Acrylonitrile/metabolism , Aerobiosis , Anaerobiosis , Animals , Daphnia/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...