Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 60(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541178

ABSTRACT

Background and Objectives: This study addresses the challenge of bone regeneration in calvarial defects, exploring the efficacy of stem cell-based therapies and enamel matrix derivative (EMD) in tissue engineering. It assesses the regenerative potential of two- and three-dimensional cell constructs combined with mesenchymal stem cells (MSCs) and EMD in rabbit calvarial defects. Materials and Methods: This research involved the use of bone-marrow-derived MSCs cultured in silicon elastomer-based concave microwells to form spheroids. White rabbits were grouped for different treatments, with Group 1 as control, Group 2 receiving only EMD, Group 3 getting EMD plus stem cells, and Group 4 being treated with EMD plus stem cell spheroids. Computed tomography (CT) and microcomputed tomography (micro-CT) imaging were used for structural assessment, while histological evaluations were conducted using hematoxylin and eosin, Masson's trichrome, and Picro-sirius red staining. Results: CT and micro-CT analyses revealed varying degrees of bone regeneration among the groups. Group 4, treated with three-dimensional MSC spheroids and EMD, showed the most significant improvement in bone regeneration. Histological analyses corroborated these findings, with Group 4 displaying enhanced bone formation and better collagen fiber organization. Conclusions: The study supported the biocompatibility and potential efficacy of three-dimensional MSC constructs combined with EMD in bone regeneration. Further investigations are needed to confirm these findings and optimize treatment protocols.


Subject(s)
Dental Enamel Proteins , Mesenchymal Stem Cells , Osteogenesis , Animals , Rabbits , X-Ray Microtomography , Bone Regeneration
2.
Biomed Res Int ; 2022: 9818299, 2022.
Article in English | MEDLINE | ID: mdl-35872843

ABSTRACT

This study was aimed at evaluating the effects of transforming growth factor-ß on the differentiation and mRNA expression of organoids made out of human mesenchymal stem cells. Cell organoids composed of gingiva-derived stem cells were cultured in the presence of transforming growth factor-ß1 at concentrations ranging from 0, 1, 10, to 20 ng/ml. Evaluations of the cell morphology of the organoids were performed on days 7, 9, 11, and 14. Quantitative cellular viability was completed on day 14. Alkaline phosphatase activity assays were performed to evaluate the differentiation of stem cells on day 14. Real-time polymerase chain reactions were used to determine the expression levels of TGF-ß1, RUNX2, OCN, SOX9, and COL1A1 mRNA on day 14. The stem cells produced well-formed organoids on day 7, and the addition of transforming growth factor-ß1 did not result in relevant changes in their shape. The organoids grew in size and became more intact with longer incubation times. On day 14, the diameters were 222.2 ± 9.6, 186.1 ± 4.8, 197.2 ± 9.6, and 211.1 ± 19.2 m for transforming growth factor-ß1 at final concentrations of 0, 1, 10, and 20 ng/ml, respectively. Quantitative cell viability results from day 14 exhibited no significant difference between the groups (P > 0.05). There was significantly higher alkaline phosphatase activity with the addition of transforming growth factor-ß1 with the highest value for the 1 ng/ml group (P < 0.05). Real-time polymerase chain reaction results demonstrated that the mRNA expression levels of RUNX2, OCN, and SOX were higher in 1 ng/ml but did not reach statistical significance. Treatment with 1 ng/ml of transforming growth factor-ß1 significantly increased COL1A1 mRNA expression at day 14. The application of transforming growth factor-ß1 increased differentiation, which was confirmed by alkaline phosphatase activity and mRNA expression while maintaining cell viability.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Transforming Growth Factor beta1 , Alkaline Phosphatase/metabolism , Cell Differentiation , Cells, Cultured , Gingiva/metabolism , Humans , Organoids/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
3.
Medicina (Kaunas) ; 59(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36676667

ABSTRACT

Background and Objectives: Centipeda minima (L.) is a well-known and traditional pharmaceutical that has been utilized to treat different conditions controlling rhinitis, soothe pain, and decrease swelling. We assessed the impacts of Centipeda minima (L.) extricates (CMTs) on the osteogenic differentiation of cell spheroids made of human-bone-marrow-derived mesenchymal stem cells. Materials and Methods: Mesenchymal stem cells (MSCs) in spheroid 3D culture were generated and propagated in the presence of CMTs ranging from 0 to 1 µg/mL. Cell morphology was measured on Days 1, 3, 5, and 7. The quantitative cellular viability was evaluated on Days 1, 3, 5, and 7. Alkaline phosphatase activity assays were designed to measure the osteogenic differentiation of mesenchymal stem cell spheroids on Day 7. Alizarin Red S staining was performed to investigate the mineralization of cell spheroids on Days 7 and 14. Real-time polymerase chain reactions were used to measure the expression levels of RUNX2 and COL1A1 on Day 14. Western blot techniques were performed to identify the protein expression of Runt-related transcription factor 2 and type I collagen. Results: The control group's mesenchymal stem cells displayed a spheroid shape. There was no noticeable change in morphology with the addition of CMTs at final concentrations of 0.001, 0.01, 0.1, and 1 µg/mL compared with the untreated (control) group. The application of CMTs did not induce a significant change in cell viability. The relative alkaline phosphatase activity values in the 0.001, 0.01, 0.1, and 1 µg/mL CMT groups were 114.4% ± 8.2%, 130.6% ± 25.3%, 87.8% ± 3.4%, and 92.1% ± 6.8%, respectively, considering a control of 100% (100.0% ± 17.9%). On Day 14, calcium deposits were clearly observed in each group. The relative values of Alizarin Red S staining in the 0.001, 0.01, 0.1, and 1 µg/mL CMT groups were 100.1% ± 8.9%, 105.9% ± 0.0%, 109.7% ± 19.1%, and 87.0% ± 40.9%, respectively, considering a control of 100% (100.0% ± 28.7%). The addition of CMT significantly increased RUNX2 expression in the 0.01 µg/mL group and COL1A1 in the 0.001 and 0.01 µg/mL groups. Normalization of protein expression showed that the addition of CMTs significantly increased type I collagen expression in the 0.001, 0.01, and 1 µg/mL groups. Conclusions: In conclusion, CMTs influence the osteogenic differentiation of bone-marrow-derived mesenchymal stem cells and the use of CMTs may positively influence the osteogenic differentiation of cell spheroids.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , Collagen Type I/metabolism , Cell Survival , Alkaline Phosphatase , Cell Differentiation , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...