Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 23505, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34873262

ABSTRACT

Since the great success of optical communications utilizing orbital angular momentum (OAM), increasing the number of addressable spatial modes in the given physical resources has always been an important yet challenging problem. The recent improvement in measurement resolution through deep-learning techniques has demonstrated the possibility of high-capacity free-space optical communications based on fractional OAM modes. However, due to a tiny gap between adjacent modes, such systems are highly susceptible to external perturbations such as atmospheric turbulence (AT). Here, we propose an AT adaptive neural network (ATANN) and study high-resolution recognition of fractional OAM modes in the presence of turbulence. We perform simulations of fractional OAM beams propagating through a 1-km optical turbulence channel and analyze the effects of turbulence strength, OAM mode interval, and signal noise on the recognition performance of the ATANN. The recognition of multiplexed fractional modes is also investigated to demonstrate the feasibility of high-dimensional data transmission in the proposed deep-learning-based system. Our results show that the proposed model can predict transmitted modes with high accuracy and high resolution despite the collapse of structured fields due to AT and provide stable performance over a wide SNR range.

2.
Sci Rep ; 11(1): 2678, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33514808

ABSTRACT

Structured light with spatial degrees of freedom (DoF) is considered a potential solution to address the unprecedented demand for data traffic, but there is a limit to effectively improving the communication capacity by its integer quantization. We propose a data transmission system using fractional mode encoding and deep-learning decoding. Spatial modes of Bessel-Gaussian beams separated by fractional intervals are employed to represent 8-bit symbols. Data encoded by switching phase holograms is efficiently decoded by a deep-learning classifier that only requires the intensity profile of transmitted modes. Our results show that the trained model can simultaneously recognize two independent DoF without any mode sorter and precisely detect small differences between fractional modes. Moreover, the proposed scheme successfully achieves image transmission despite its densely packed mode space. This research will present a new approach to realizing higher data rates for advanced optical communication systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...