Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(49): 73828-73841, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36103066

ABSTRACT

Greenhouse gas from rice production has become a great concern and the focus of a lot of research in recent years. The main aim of the study was to explore the research trend of GHG emissions from rice production by exploring the research hotspots and providing suggestions for future research directions over the period 1991 to 2020. A bibliometric analysis was conducted using the Scopus database, and the sample included 2535 articles. The methodology was based on descriptive analysis, co-occurrence analysis, factorial analysis, word dynamic over time, and the author's keyword analysis over time. The results indicate a remarkable increase in the number of articles published on this topic, mainly in the journals of "Agriculture," "Ecosystems," and "Environment." The main authors were Conrad R. and Wassmann R. Relating to the number of published articles, very few were contributed by African countries, whereas China, Japan, and India were the main contributors. The co-occurrence analysis showed that rice, methane, and nitrous oxide are the core keywords of the network. The multiple factorial analysis pointed out that greenhouse gas emissions from rice production depend on the farming practices, the environmental factors, and the plant growth as well. The evolutionary path showed that the current author's keywords are more related to global warming potential, climate change, and biochar. The findings of this review can help researchers and scholars by providing a better overview of development trends that have emerged over the past 30 years and suggestions for the future direction in this field.


Subject(s)
Greenhouse Gases , Oryza , Agriculture/methods , Bibliometrics , China , Ecosystem , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Soil
2.
Front Plant Sci ; 8: 996, 2017.
Article in English | MEDLINE | ID: mdl-28680427

ABSTRACT

Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean-maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers' managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20-29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along with crop residue retention presents a win-win scenario due to improved crop yield, increased economic return, and trends of increasing soil fertility. The biggest challenge, however, remains with producing enough biomass and retaining same on the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...