Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 22(1): e3002486, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236896

ABSTRACT

Acute gastrointestinal infection with intracellular pathogens like Salmonella Typhimurium triggers the release of the proinflammatory cytokine interleukin 1ß (IL-1ß). However, the role of IL-1ß in intestinal defense against Salmonella remains unclear. Here, we show that IL-1ß production is detrimental during Salmonella infection. Mice lacking IL-1ß (IL-1ß -/-) failed to recruit neutrophils to the gut during infection, which reduced tissue damage and prevented depletion of short-chain fatty acid (SCFA)-producing commensals. Changes in epithelial cell metabolism that typically support pathogen expansion, such as switching energy production from fatty acid oxidation to fermentation, were absent in infected IL-1ß -/- mice which inhibited Salmonella expansion. Additionally, we found that IL-1ß induces expression of complement anaphylatoxins and suppresses the complement-inactivator carboxypeptidase N (CPN1). Disrupting this process via IL-1ß loss prevented mortality in Salmonella-infected IL-1ß -/- mice. Finally, we found that IL-1ß expression correlates with expression of the complement receptor in patients suffering from sepsis, but not uninfected patients and healthy individuals. Thus, Salmonella exploits IL-1ß signaling to outcompete commensal microbes and establish gut colonization. Moreover, our findings identify the intersection of IL-1ß signaling and the complement system as key host factors involved in controlling mortality during invasive Salmonellosis.


Subject(s)
Interleukin-1beta , Salmonella Infections , Animals , Humans , Mice , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Neutrophils/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Virulence
2.
Autophagy ; 19(11): 3014-3016, 2023 11.
Article in English | MEDLINE | ID: mdl-37436421

ABSTRACT

Mucus secretion from colonic goblet cells is an important host defense mechanism against the harsh lumenal environment. Yet how mucus secretion is regulated is not well understood. We discovered that constitutive activation of macroautophagy/autophagy via BECN1 (beclin 1) relieves endoplasmic reticulum (ER) stress in goblet cells, which in turn produce a thicker and less penetrable mucus barrier. Pharmacological reduction of the ER stress or activation of the unfolded protein response (UPR) in mice, regardless of autophagy activation, lead to excess mucus secretion. This regulation of mucus secretion by ER stress is microbiota-dependent and requires the activity of the intracellular sensor NOD2 (nucleotide-binding oligomerization domain containing 2). Excess mucus production in the colon alters the gut microbiota and protects from chemical- and infection-driven inflammation. Our findings provide new insights into the mechanisms by which autophagy regulates mucus secretion and susceptibility to intestinal inflammation.Abbreviations:BECN1- Beclin 1; ER- endoplasmic reticulum; UPR - unfolded protein response; NOD2 - nucleotide-binding oligomerization domain containing 2; IBD- inflammatory bowel disease; BCL2- B cell leukemia/lymphoma 2; TUDCA- tauroursodeoxycholic acid; ATG16L1- autophagy related 16 like 1; LRRK2- leucine-rich repeat kinase 2.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Animals , Mice , Beclin-1/metabolism , Autophagy/physiology , Inflammation/metabolism , Mucus/metabolism , Nucleotides/metabolism
3.
Cell Host Microbe ; 31(3): 433-446.e4, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36738733

ABSTRACT

Colonic goblet cells are specialized epithelial cells that secrete mucus to physically separate the host and its microbiota, thus preventing bacterial invasion and inflammation. How goblet cells control the amount of mucus they secrete is unclear. We found that constitutive activation of autophagy in mice via Beclin 1 enables the production of a thicker and less penetrable mucus layer by reducing endoplasmic reticulum (ER) stress. Accordingly, genetically inhibiting Beclin 1-induced autophagy impairs mucus secretion, while pharmacologically alleviating ER stress results in excessive mucus production. This ER-stress-mediated regulation of mucus secretion is microbiota dependent and requires the Crohn's-disease-risk gene Nod2. Overproduction of mucus alters the gut microbiome, specifically expanding mucus-utilizing bacteria, such as Akkermansia muciniphila, and protects against chemical and microbial-driven intestinal inflammation. Thus, ER stress is a cell-intrinsic switch that limits mucus secretion, whereas autophagy maintains intestinal homeostasis by relieving ER stress.


Subject(s)
Goblet Cells , Inflammation , Animals , Mice , Beclin-1 , Mucus , Autophagy , Intestinal Mucosa/microbiology
4.
Cell Rep ; 41(7): 111657, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384106

ABSTRACT

Changes in microbiome composition are associated with a wide array of human diseases, turning the human microbiota into an attractive target for therapeutic intervention. Yet, clinical translation of these findings requires the establishment of causative connections between specific microbial taxa and their functional impact on host tissues. Here, we infuse gut organ cultures with longitudinal microbiota samples collected from therapy-naive patients with irritable bowel syndrome (IBS) under a low-fermentable oligo-, di-, mono-saccharides and polyols (FODMAP) diet. We show that post-diet microbiota regulates intestinal expression of inflammatory and neuro-muscular gene sets. Specifically, we identify Bifidobacterium adolescentis as a diet-sensitive pathobiont that alters tight junction integrity and disrupts gut barrier functions. Collectively, we present a pathway discovery platform for mechanistic dissection and identification of functional diet-host-microbiota modules. Our data support the hypothesis that the gut microbiota mediates the beneficial effects of a low-FODMAP diet and reinforce the potential feasibility of microbiome-based therapies in IBS.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/therapy , Diet, Carbohydrate-Restricted , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...