Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Am Vet Med Assoc ; 259(2): 172-183, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34227867

ABSTRACT

CASE DESCRIPTION: In Latvia in 2014, acquired idiopathic megaesophagus (AIME) was observed in increased numbers of dogs that consumed varieties of 1 brand of dog food. Within 2 years, 253 dogs were affected. In Australia in November 2017, 6 working dogs that consumed 1 diet of another brand of dog food developed AIME. In total, 145 Australian dogs were affected. CLINICAL FINDINGS: AIME was diagnosed predominantly in large-breed male dogs (> 25 kg [55 lb]). Regurgitation, weight loss, and occasionally signs consistent with aspiration pneumonia (coughing, dyspnea, or fever) were noted. Most Latvian dogs had mild to severe peripheral polyneuropathies as evidenced by laryngeal paralysis, dysphonia, weakness, and histopathologic findings consistent with distal axonopathy. In Australian dogs, peripheral polyneuropathies were not identified, and histopathologic findings suggested that the innervation of the esophagus and pharynx was disrupted locally, although limited samples were available. TREATMENT AND OUTCOME: Investigations in both countries included clinical, epidemiological, neuropathologic, and case-control studies. Strong associations between the dog foods and the presence of AIME were confirmed; however, toxicological analyses did not identify a root cause. In Latvia, the implicated dietary ingredients and formulations were unknown, whereas in Australia, extensive investigations were conducted into the food, its ingredients, the supply chain, and the manufacturing facilities, but a cause was not identified. CLINICAL RELEVANCE: A panel of international multidisciplinary experts concluded that the cause of AIME in both outbreaks was likely multifactorial, with the possibility of individualized sensitivities. Without a sentinel group, the outbreak in Australia may not have been recognized for months to years, as happened in Latvia. A better surveillance system for early identification of pet illnesses, including those associated with pet foods, is needed.


Subject(s)
Dog Diseases , Esophageal Achalasia , Animal Feed , Animals , Australia , Disease Outbreaks , Dog Diseases/epidemiology , Dog Diseases/etiology , Dogs , Esophageal Achalasia/veterinary , Latvia/epidemiology , Male
2.
Vet Sci ; 5(3)2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29949938

ABSTRACT

Adverse food reactions (AFR) are a common cause of skin diseases in cats and dogs. The correct diagnosis and management of AFR relies upon clinical nutrition. The reliability of commercial hypoallergenic diets commonly used in AFR has been questioned because studies have shown the presence of proteins not declared on the label ingredients. It is proposed that extensively hydrolysed protein-based diets constitute a reliable nutritional solution. Royal Canin Anallergenic™ Canine and Feline diets are formulated with very low molecular weight feather protein and purified corn starch. Protein gel electrophoresis and thin layer paper chromatography were used to characterize protein hydrolysis in these diets and their hydrolysed raw materials; protein species were identified by mass spectrometry. To detect cross-contaminating protein, species-specific DNA was measured and correlated with ancillary protein content using calibration curves. The only protein components detected in the extensively hydrolysed feather protein raw material were amino acids and small oligopeptides. GBSS-I (Granule-bound starch synthase 1) was detected in the finished diets; this has not been reported as a clinically apparent allergen in dogs or cats. The DNA threshold corresponding to the maximum acceptable level of ancillary protein was not exceeded in 99.9% of more than 2150 product batches tested and no products were released to the market with cross-contaminating proteins. These results demonstrate the extensive level of protein hydrolysis in Royal Canin Anallergenic™ Canine and Feline diets and the absence of cross-contaminating protein, both key requirements for a diet to be used during diagnosis and for management of pets with AFR.

3.
Aquat Toxicol ; 106-107: 85-94, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22115907

ABSTRACT

Blooms of the toxic alga Karenia brevis occur along coastlines where sessile suspension feeding invertebrates are common components of benthic communities. We studied the effects of K. brevis on four benthic suspension feeding invertebrates common to the coast of the SE United States: the sponge Haliclona tubifera, the bryozoan Bugula neritina, the bivalve Mercenaria mercenaria, and the tunicate Styela plicata. In controlled laboratory experiments, we determined the rate at which K. brevis was cleared from the seawater by these invertebrates, the effect of K. brevis on clearance rates of a non-toxic phytoplankton species, Rhodomonas sp., and the extent to which brevetoxins bioaccumulated in tissues of invertebrates using an enzyme-linked immunosorbent assay (ELISA). All four invertebrate species cleared significant quantities of K. brevis from seawater, with mean clearance rates ranging from 2.27 to 6.71 L g h⁻¹ for H. tubifera and S. plicata, respectively. In the presence of K. brevis, clearance rates of Rhodomonas sp. by B. neritina and S. plicata were depressed by 75% and 69%, respectively, while clearance rates by H. tubifera and M. mercenaria were unaffected. Negative effects of K. brevis were impermanent; after a recovery period of 13 h, B. neritina and S. plicata regained normal clearance rates. All four invertebrates accumulated high concentrations of brevetoxin after a 4h exposure to K. brevis, but when animals were transferred to filtered seawater for 15 h after exposure, brevetoxin concentrations in the tissues of H. tubifera and B. neritina decreased by ∼80%, while there was no change in toxin concentration in the tissues of S. plicata and M. mercenaria. High cell concentrations of K. brevis may cause a suppression of clearance rates in benthic suspension feeding invertebrates, resulting in a positive feedback for bloom formation. Also, high concentrations of toxin may accumulate in the tissues of benthic suspension feeding invertebrates that may be transferred to higher-level consumers.


Subject(s)
Aquatic Organisms/metabolism , Invertebrates/metabolism , Marine Toxins/metabolism , Oxocins/metabolism , Water Pollutants, Chemical/metabolism , Animals , Aquatic Organisms/physiology , Bivalvia/metabolism , Bivalvia/physiology , Bryozoa/metabolism , Bryozoa/physiology , Feeding Behavior , Invertebrates/physiology , Porifera/metabolism , Porifera/physiology , Stress, Physiological , Urochordata/metabolism , Urochordata/physiology
4.
Harmful Algae ; 10(6): 744-748, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-22053149

ABSTRACT

Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red tide aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.

5.
Harmful Algae ; 10(2): 138-143, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21499552

ABSTRACT

Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols.

6.
Harmful Algae ; 10(2): 224-233, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21218152

ABSTRACT

This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

7.
J Plankton Res ; 33(2): 343-348, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21191552

ABSTRACT

The harmful alga, Karenia brevis, produces a suite of polyether neurotoxins, brevetoxins or PbTx, that cause marine animal mortality and neurotoxic shellfish poisoning (NSP). A characteristic of K. brevis blooms is associated airborne toxins that result in severe respiratory problems. This study was undertaken to determine the composition of aerosolized brevetoxins and oxidative derivatives to which beachgoers are exposed during a K. brevis bloom. The suite of brevetoxins and derivatives in seawater is comprised of intra-cellular (IC) and extra-cellular (EC) compounds. We hypothesized that aerosolized compounds are generated primarily from EC, hydrophobic compounds in seawater by bubble-mediated transport. Thus the composition of aerosolized brevetoxins and derivatives, to which beachgoers are exposed, would reflect the EC composition of the source matrix (the local surf zone). Brevetoxins were extracted from water collected along the shore and from marine aerosols along Siesta Beach and Lido Beach in Sarasota, FL, USA, during K. brevis blooms. Water samples were further processed into IC and EC components. The primary brevetoxins observed in water and air included PbTx-1, -2, -3, -PbTx-2-carboxylic acid, and brevenal. Oxidation and/or hydrolysis products of PbTx-1, -2, -3 and -7 were also found in EC water and in aerosol, but not IC.

8.
Aquat Toxicol ; 100(4): 365-72, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20863581

ABSTRACT

The increasing frequency of devastating blooms of the harmful dinoflagellate Karenia brevis has motivated investigations into understanding bloom dynamics and the potential for mitigation. Previous findings indicate that waterborne concentrations of the most abundant brevetoxin (brevetoxin B or PbTx-2) associated with these blooms decrease in the presence of other phytoplankton species. The current study explores the mechanism of brevetoxin removal from seawater upon exposure to phytoplankton competitors. Live phytoplankton removed waterborne brevetoxins more rapidly than lysates, but phytoplankton did not need to be in a state of active metabolism. Biomolecules, probably proteins, exuded from phytoplankton appeared to be responsible for the loss of brevetoxins, either by irreversible complexation or by degradation. Selective removal of PbTx-2 and -1, but not PbTx-3, -9 or BTX-B5, by cultured phytoplankton revealed that brevetoxin removal is dependent upon the presence of an α,ß-unsaturated aldehyde functionality. The mechanism of biotransformation appears to be common among phytoplankton, since members of various taxonomic groups including diatoms, dinoflagellates, and a cryptophyte each caused 75-90% decrease in PbTx-2 concentration, as did a generic protein (bovine serum albumin) added to seawater at high concentration. These findings support the concept of potentially using competitor phytoplankton species or compounds derived from phytoplankton as biocontrol agents for waterborne toxins associated with red tide.


Subject(s)
Marine Toxins/metabolism , Oxocins/metabolism , Phytoplankton/metabolism , Poisons/metabolism , Biotransformation , Diatoms/drug effects , Diatoms/metabolism , Marine Toxins/toxicity , Oxocins/toxicity , Phytoplankton/drug effects , Poisons/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
9.
J Occup Environ Hyg ; 7(6): 326-31, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20379895

ABSTRACT

Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Inhalation Exposure/analysis , Marine Toxins/analysis , Nasal Cavity , Oxocins/analysis , Aerosols/analysis , Florida , Harmful Algal Bloom , Humans
10.
Harmful Algae ; 9(1): 82-86, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20161425

ABSTRACT

Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

11.
Harmful Algae ; 9(2): 186-189, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20161504

ABSTRACT

Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols.

12.
Environ Health Perspect ; 117(7): 1095-100, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19654919

ABSTRACT

BACKGROUND: In previous studies we demonstrated statistically significant changes in reported symptoms for lifeguards, general beach goers, and persons with asthma, as well as statistically significant changes in pulmonary function tests (PFTs) in asthmatics, after exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols. OBJECTIVES: In this study we explored the use of different methods of intensive ambient and personal air monitoring to characterize these exposures to predict self-reported health effects in our asthmatic study population. METHODS: We evaluated health effects in 87 subjects with asthma before and after 1 hr of exposure to Florida red tide aerosols and assessed for aerosolized brevetoxin exposure using personal and ambient samplers. RESULTS: After only 1 hr of exposure to Florida red tide aerosols containing brevetoxin concentrations > 57 ng/m(3), asthmatics had statistically significant increases in self-reported respiratory symptoms and total symptom scores. However, we did not see the expected corresponding changes in PFT results. Significant increases in self-reported symptoms were also observed for those not using asthma medication and those living >/= 1 mile from the coast. CONCLUSIONS: These results provide additional evidence of health effects in asthmatics from ambient exposure to aerosols containing very low concentrations of brevetoxins, possibly at the lower threshold for inducing a biologic response (i.e., toxicity). Consistent with the literature describing self-reported symptoms as an accurate measure of asthmatic distress, our results suggest that self-reported symptoms are a valuable measure of the extent of health effects from exposure to aerosolized brevetoxins in asthmatic populations.


Subject(s)
Asthma/pathology , Inhalation Exposure , Marine Toxins/toxicity , Oxocins/toxicity , Adolescent , Adult , Aerosols/toxicity , Aged , Enzyme-Linked Immunosorbent Assay , Female , Florida , Humans , Male , Mass Spectrometry , Middle Aged , Young Adult
13.
Proc Biol Sci ; 275(1652): 2733-41, 2008 Dec 07.
Article in English | MEDLINE | ID: mdl-18713720

ABSTRACT

Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.


Subject(s)
Dinoflagellida/chemistry , Dinoflagellida/growth & development , Ecosystem , Eutrophication/drug effects , Phytoplankton/chemistry , Phytoplankton/growth & development , Analysis of Variance , Animals , Growth Inhibitors/pharmacology , Species Specificity
14.
Toxicon ; 50(5): 707-23, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17675204

ABSTRACT

Brevetoxins and ciguatoxins are closely related potent marine neurotoxins. Although ciguatoxins accumulate in fish to levels that are dangerous for human consumption, live fish have not been considered as potential sources of brevetoxin exposure in humans. Here we show that, analogous to ciguatoxins, brevetoxins can accumulate in live fish by dietary transfer. We experimentally identify two pathways leading to brevetoxin-contaminated omnivorous and planktivorous fish. Fish fed with toxic shellfish and Karenia brevis cultures remained healthy and accumulated high brevetoxin levels in their tissues (up to 2675 ng g(-1) in viscera and 1540 ng g(-1) in muscle). Repeated collections of fish from St. Joseph Bay in the Florida panhandle reveal that accumulation of brevetoxins in healthy fish occurs in the wild. We observed that levels of brevetoxins in the muscle of fish at all trophic levels rise significantly, but not to dangerous levels, during a K. brevis bloom. Concentrations were highest in fish liver and stomach contents, and increased during and immediately following the bloom. The persistence of brevetoxins in the fish food web was followed for 1 year after the K. brevis bloom.


Subject(s)
Food Chain , Marine Toxins/pharmacokinetics , Neurotoxins/pharmacokinetics , Oxocins/pharmacokinetics , Smegmamorpha/physiology , Animal Feed , Animals , Dinoflagellida/metabolism , Environmental Monitoring , Eutrophication , Gastrointestinal Contents/chemistry , Gastrointestinal Contents/drug effects , Marine Toxins/analysis , Marine Toxins/toxicity , Mercenaria/chemistry , Muscle, Skeletal/chemistry , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Neurotoxins/analysis , Neurotoxins/toxicity , Oxocins/analysis , Oxocins/toxicity , Shellfish
15.
Chest ; 131(1): 187-94, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17218574

ABSTRACT

BACKGROUND: With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. METHODS: Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. RESULTS: Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). CONCLUSIONS: This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.


Subject(s)
Asthma/etiology , Dinoflagellida/pathogenicity , Marine Toxins/toxicity , Oxocins/toxicity , Adolescent , Adult , Aerosols , Aged , Animals , Child , Chromatography, High Pressure Liquid , Environmental Monitoring , Enzyme-Linked Immunosorbent Assay , Female , Florida , Humans , Inhalation Exposure , Male , Mass Spectrometry , Middle Aged , Respiratory Function Tests , Surveys and Questionnaires
16.
Environ Sci Technol ; 39(10): 3443-9, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15954221

ABSTRACT

Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 microm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways.


Subject(s)
Air Pollutants/analysis , Inhalation Exposure , Irritants/analysis , Marine Toxins/analysis , Oxocins/analysis , Aerosols , Animals , Bathing Beaches , Chromatography, Liquid/methods , Dinoflagellida/chemistry , Dinoflagellida/cytology , Environmental Monitoring , Enzyme-Linked Immunosorbent Assay , Florida , Gas Chromatography-Mass Spectrometry/methods , Humans , Irritants/toxicity , Lung/drug effects , Lung/physiology , Male , Models, Biological , Neurotoxins/analysis , Particle Size , Risk Assessment , Seawater/analysis
17.
Nature ; 435(7043): 755-6, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944690

ABSTRACT

Potent marine neurotoxins known as brevetoxins are produced by the 'red tide' dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.


Subject(s)
Dinoflagellida/chemistry , Food Chain , Mammals/metabolism , Marine Biology , Marine Toxins/analysis , Oxocins/analysis , Animals , Dolphins/metabolism , Fishes/metabolism , Gastrointestinal Contents/chemistry , Humans , Trichechus/metabolism
18.
Environ Health Perspect ; 113(5): 621-5, 2005 May.
Article in English | MEDLINE | ID: mdl-15866774

ABSTRACT

Symptoms consistent with inhalation toxicity have long been associated with Florida red tides, and various causal agents have been proposed. Research since 1981 has centered on a group of naturally occurring trans-fused cyclic polyether compounds called brevetoxins that are produced by a marine dinoflagellate known as Karenia brevis. Numerous individual brevetoxins have been identified from cultures as well as from natural bloom events. A spectrum of brevetoxin derivatives produced by chemical modification of the natural toxins has been prepared to examine the effects of functional group modification on physiologic activity. Certain structural features of natural and synthetic derivatives of brevetoxin appear to ascribe specific physiologic consequences to each toxin. Differential physiologic effects have been documented with many of the natural toxins and derivatives, reinforcing the hypothesis that metabolism or modification of toxin structures modulates both the specific toxicity (lethality on a per milligram basis) and potentially the molecular mechanism(s) of action. A series of naturally occurring fused-ring polyether compounds with fewer rings than brevetoxin, known as brevenals, exhibit antagonistic properties and counteract the effects of the brevetoxins in neuronal and pulmonary model systems. Taken together, the inhalation toxicity of Florida red tides would appear to depend on the amount of each toxin present, as well as on the spectrum of molecular activities elicited by each toxin. Toxicity in a bloom is diminished by the amount brevenal present.


Subject(s)
Dinoflagellida/pathogenicity , Inhalation Exposure , Marine Toxins/adverse effects , Marine Toxins/toxicity , Oxocins/toxicity , Respiratory Tract Diseases/etiology , Thiopental/analogs & derivatives , Thiopental/toxicity , Animals , Eutrophication , Florida , Humans , Public Health , Risk Assessment , Structure-Activity Relationship
19.
Environ Health Perspect ; 113(5): 626-31, 2005 May.
Article in English | MEDLINE | ID: mdl-15866775

ABSTRACT

Brevetoxins are potent neurotoxins produced by the marine dinoflagellate Karenia brevis. Exposure to brevetoxins may occur during a K. brevis red tide when the compounds become aerosolized by wind and surf. This study assessed possible adverse health effects associated with inhalation exposure to brevetoxin 3, one of the major brevetoxins produced by K. brevis and present in aerosols collected along beaches affected by red tide. Male F344 rats were exposed to brevetoxin 3 at 0, 37, and 237 microg/m3 by nose-only inhalation 2 hr/day, 5 days/week for up to 22 exposure days. Estimated deposited brevetoxin 3 doses were 0.9 and 5.8 microg/kg/day for the low- and high-dose groups, respectively. Body weights of the high-dose group were significantly below control values. There were no clinical signs of toxicity. Terminal body weights of both low- and high-dose-group rats were significantly below control values. Minimal alveolar macrophage hyperplasia was observed in three of six and six of six of the low- and high-dose groups, respectively. No histopathologic lesions were observed in the nose, brain, liver, or bone marrow of any group. Reticulocyte numbers in whole blood were significantly increased in the high-dose group, and mean corpuscular volume showed a significant decreasing trend with increasing exposure concentration. Humoral-mediated immunity was suppressed in brevetoxin-exposed rats as indicated by significant reduction in splenic plaque-forming cells in both low- and high-dose-group rats compared with controls. Results indicate that the immune system is the primary target for toxicity in rats after repeated inhalation exposure to relatively high concentrations of brevetoxins.


Subject(s)
Antibody Formation/drug effects , Dinoflagellida/pathogenicity , Inhalation Exposure , Marine Toxins/toxicity , Oxocins/toxicity , Aerosols , Animals , Body Weight , Eutrophication , Male , Rats , Rats, Inbred F344
20.
Environ Health Perspect ; 113(5): 638-43, 2005 May.
Article in English | MEDLINE | ID: mdl-15866777

ABSTRACT

Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period (May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 microg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m(3). The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6-12 microm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods.


Subject(s)
Aerosols/chemistry , Dinoflagellida/pathogenicity , Marine Toxins/analysis , Occupational Exposure , Oxocins/analysis , Aerosols/analysis , Animals , Environmental Monitoring , Enzyme-Linked Immunosorbent Assay , Epidemiologic Studies , Florida , Humans , Recreation , Seawater , Swimming , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...