Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 86(11): 1490-1496, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35977393

ABSTRACT

Ecdysone agonists are a class of insecticides that activate the ecdysone receptor (EcR) heterodimerized with the ultraspiracle (USP). Here, we report a new luciferase reporter assay for ecdysone agonists. The assay employs mammalian HEK293T cells transiently transfected with the EcR and USP genes of Chilo suppressalis, along with the taiman (Tai) gene of Drosophila melanogaster that encodes a steroid receptor coactivator. This assay system gave results consistent with those of radioligand binding assays and showed sensitivity superior to that of the existing in vitro methods. In addition, use of the heterologous host cells precludes perturbation from intrinsic players of the ecdysone signaling, which is a potential drawback of insect cell-based methods. This reporter system is suitable for detailed structure-activity analysis of ecdysone agonists and will serve as a valuable tool for the rational design of novel insect growth regulators.


Subject(s)
Drosophila Proteins , Insecticides , Receptors, Steroid , Animals , Humans , Ecdysone/pharmacology , Ecdysone/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , HEK293 Cells , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Luciferases/genetics , Juvenile Hormones , Mammals/metabolism
2.
J Pestic Sci ; 46(1): 68-74, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33746548

ABSTRACT

Juvenile hormone (JH) agonists constitute a subclass of insect growth regulators and play important roles in insect pest management. In this work, a multi-step virtual screening program was executed to find novel JH agonists. A database of 5 million purchasable compounds was sequentially processed with three computational filters: (i) shape and chemical similarity as compared to known JH-active compounds; (ii) molecular docking simulations against a Drosophila JH receptor, methoprene-tolerant; and (iii) free energy calculation of ligand-receptor binding using a modified MM/PBSA (molecular mechanics/Poisson-Boltzmann surface area) protocol. The 11 candidates that passed the three filters were evaluated in a luciferase reporter assay, leading to the identification of a hit compound that contains a piperazine ring system (EC50=870 nM). This compound is structurally dissimilar to known JH agonists and synthetically easy to access; therefore, it is a promising starting point for further structure optimization.

3.
Pest Manag Sci ; 76(7): 2316-2323, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32003111

ABSTRACT

BACKGROUND: Juvenile hormones (JHs) are a class of sesquiterpenoids that play a pivotal role in insect growth and reproduction. Synthetic JH agonists (JHAs), including pyriproxyfen, have been widely used as insecticides to control agricultural pests and disease vectors. The antimetamorphic action of JHAs is mediated by their intracellular receptor, the heterodimer of Methoprene-tolerant (Met) and Taiman (Tai) proteins. Although a range of bioassay systems has been developed to detect the activity of JHAs, each of these systems has its own drawback(s), such as poor reproducibility, the use of radioactive ligands or the effect of endogenous JH-signaling factors. RESULTS: To address these issues, we constructed a new luciferase reporter assay for JHAs in mammalian HEK293T cells transiently transfected with the Drosophila Met and Tai genes. This reporter system gave highly reproducible results and showed nanomolar sensitivity to natural JHs. We then applied this reporter system to a structure-activity relationship (SAR) analysis of 14 natural and synthetic JHAs, leading to identification of the ligand structural factors important for the transcription-inducing activity. CONCLUSION: Because this reporter system is not affected by the signaling cascade downstream of the JH receptors, it is suitable for evaluating the intrinsic activity of JHAs. The SAR results obtained in this study therefore provide invaluable information on the rational design of novel JHA insecticides.


Subject(s)
Methoprene/metabolism , Animals , Drosophila Proteins , Drosophila melanogaster , HEK293 Cells , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...