Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 222(3): 769-74, 1994 Jun 15.
Article in English | MEDLINE | ID: mdl-8026490

ABSTRACT

The hydrogenase enzyme occurring in Chlamydomonas reinhardtii is induced by anaerobic adaptation of the cells. In aerobically growing cells, antibodies against the hydrogenase failed to detect either active or inactive enzyme. However, already 10 min after the onset of anaerobic adaptation, the protein could be detected. The maximal amount of enzyme was reached after 2-3 hours anaerobiosis. Addition of nickel or iron to the growth medium did not influence activity. In atomic absorption experiments, a Ni/Fe ratio of about 1:250 was measured. We, therefore, propose the hydrogenase from C. reinhardtii to be of the Fe-only type. Adaptation in the presence of uncouplers of phosphorylation showed this process to be energy-dependent. From protein synthesis inhibition experiments, it is concluded that the protein is synthesized on cytoplasmic ribosomes and, therefore, must be nuclear encoded. After isolation of intact chloroplasts from adapted cells, the active enzyme was shown, by Western-blotting analysis, to be located in the chloroplasts.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Chloroplasts/enzymology , Hydrogenase/biosynthesis , Hydrogenase/chemistry , Adaptation, Physiological , Anaerobiosis , Animals , Blotting, Western , Chlamydomonas reinhardtii/growth & development , Chloramphenicol/pharmacology , Cycloheximide/pharmacology , Enzyme Induction/drug effects , Hydrogenase/analysis , Iron/analysis , Iron/pharmacology , Nickel/pharmacology , Phosphorylation , Ribosomes/enzymology , Spectrophotometry, Atomic , Uncoupling Agents/pharmacology
2.
Eur J Biochem ; 214(2): 475-81, 1993 Jun 01.
Article in English | MEDLINE | ID: mdl-8513797

ABSTRACT

Hydrogenase from Chlamydomonas reinhardtii was purified to homogeneity by five column-chromatography steps under strict anaerobic conditions. The cells were disrupted by mild treatment with detergent. The enzyme was purified 6100-fold, resulting in a specific activity for H2 evolution of 935 mumol.min-1.mg protein-1 at 25 degrees C, using reduced methyl viologen as electron donor. The optimal temperature for hydrogen evolution is 60 degrees C, the optimal pH value is 6.9. The Km value for methyl viologen is 0.83 mM, for ferredoxin, 35 microM. From SDS/PAGE gels, the protein was judged to be pure. On non-denaturing gels, run under nitrogen, a single band was detected after activity staining. This band corresponded to the single band observed on denaturing SDS gels, which had an apparent molecular mass of 48 kDa. If the band was cut out of the native gel and incubated with reduced methyl viologen, hydrogen evolution could be measured. The purified enzyme contains 4 Fe atoms/mol. The amino acid composition and the N-terminal amino acid sequence (24 residues) of the protein were determined. No significant amino acid sequence homologies could be found to any sequences from prokaryotic hydrogenases.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Hydrogenase/isolation & purification , Adaptation, Physiological , Amino Acid Sequence , Amino Acids/analysis , Anaerobiosis , Animals , Electrophoresis, Polyacrylamide Gel , Hydrogen/metabolism , Hydrogen-Ion Concentration , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron/analysis , Molecular Sequence Data , Temperature
3.
Photosynth Res ; 38(3): 309-14, 1993 Jan.
Article in English | MEDLINE | ID: mdl-24317984

ABSTRACT

In Photosystem II (PS II), water is oxidized to molecular oxygen and plastoquinone is reduced to plastoquinol. The oxidation of water requires the accumulation of four oxidizing equivalents, through the so-called S-states of the oxygen evolving complex; the production of plastoquinol requires the accumulation of two reducing equivalents on a bound plastoquinone, QB. It has been generally believed that during the flash-induced transition of each of the S-states (Sn → Sn+1, where n=0, 1, 2 and 3), a certain small but equal fraction of the PS II reaction centers are unable to function and, thus, 'miss' being turned over. We used thoroughly dark-adapted thylakoids from peas (Pisum sativum) and Chenopodium album (susceptible and resistant to atrazine) starting with 100% of the oxygen evolving complex in the S1 state. Thylakoids were illuminated with saturating flashes, providing a double hit parameter of about 0.07. Our experimental data on flashnumber dependent oscillations in the amount of oxygen per flash fit very well with a binary pattern of misses: 0, 0.2, 0, 0.4 during S0 → S1, S1 → S2, S2 → S3 and S3 → S0 transitions. Addition of 2 mM ferricyanide appears to shift this pattern by one flash. These results are consistent with the 'bicycle' model recently proposed by V. P. Shinkarev and C. A. Wraight (Oxygen evolution in photosynthesis: From unicycle to bicycle, 1993, Proc Natl Acad Sci USA 90: 1834-1838), where misses are due to the presence of P(+) or QA (-) among the various equilibrium states of PS II centers.

SELECTION OF CITATIONS
SEARCH DETAIL
...