Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365964

ABSTRACT

Fish species recognition is crucial to identifying the abundance of fish species in a specific area, controlling production management, and monitoring the ecosystem, especially identifying the endangered species, which makes accurate fish species recognition essential. In this work, the fish species recognition problem is formulated as an object detection model to handle multiple fish in a single image, which is challenging to classify using a simple classification network. The proposed model consists of MobileNetv3-large and VGG16 backbone networks and an SSD detection head. Moreover, a class-aware loss function is proposed to solve the class imbalance problem of our dataset. The class-aware loss takes the number of instances in each species into account and gives more weight to those species with a smaller number of instances. This loss function can be applied to any classification or object detection task with an imbalanced dataset. The experimental result on the large-scale reef fish dataset, SEAMAPD21, shows that the class-aware loss improves the model over the original loss by up to 79.7%. The experimental result on the Pascal VOC dataset also shows the model outperforms the original SSD object detection model.


Subject(s)
Deep Learning , Ecosystem
2.
Sensors (Basel) ; 22(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36366160

ABSTRACT

When it comes to some essential abilities of autonomous ground vehicles (AGV), detection is one of them. In order to safely navigate through any known or unknown environment, AGV must be able to detect important elements on the path. Detection is applicable both on-road and off-road, but they are much different in each environment. The key elements of any environment that AGV must identify are the drivable pathway and whether there are any obstacles around it. Many works have been published focusing on different detection components in various ways. In this paper, a survey of the most recent advancements in AGV detection methods that are intended specifically for the off-road environment has been presented. For this, we divided the literature into three major groups: drivable ground and positive and negative obstacles. Each detection portion has been further divided into multiple categories based on the technology used, for example, single sensor-based, multiple sensor-based, and how the data has been analyzed. Furthermore, it has added critical findings in detection technology, challenges associated with detection and off-road environment, and possible future directions. Authors believe this work will help the reader in finding literature who are doing similar works.


Subject(s)
Autonomous Vehicles , Off-Road Motor Vehicles , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...