Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Healthc Inform Res ; 29(4): 301-314, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37964452

ABSTRACT

OBJECTIVES: Enhancing critical care efficacy involves evaluating and improving system functioning. Benchmarking, a retrospective comparison of results against standards, aids risk-adjusted assessment and helps healthcare providers identify areas for improvement based on observed and predicted outcomes. The last two decades have seen the development of several models using machine learning (ML) for clinical outcome prediction. ML is a field of artificial intelligence focused on creating algorithms that enable computers to learn from and make predictions or decisions based on data. This narrative review centers on key discoveries and outcomes to aid clinicians and researchers in selecting the optimal methodology for critical care benchmarking using ML. METHODS: We used PubMed to search the literature from 2003 to 2023 regarding predictive models utilizing ML for mortality (592 articles), length of stay (143 articles), or mechanical ventilation (195 articles). We supplemented the PubMed search with Google Scholar, making sure relevant articles were included. Given the narrative style, papers in the cohort were manually curated for a comprehensive reader perspective. RESULTS: Our report presents comparative results for benchmarked outcomes and emphasizes advancements in feature types, preprocessing, model selection, and validation. It showcases instances where ML effectively tackled critical care outcome-prediction challenges, including nonlinear relationships, class imbalances, missing data, and documentation variability, leading to enhanced results. CONCLUSIONS: Although ML has provided novel tools to improve the benchmarking of critical care outcomes, areas that require further research include class imbalance, fairness, improved calibration, generalizability, and long-term validation of published models.

2.
PLOS Digit Health ; 2(9): e0000289, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37703526

ABSTRACT

Predicting the duration of ventilation in the ICU helps in assessing the risk of ventilator-induced lung injury, ensuring sufficient oxygenation, and optimizing resource allocation. Prior models provided a prediction of total duration without distinguishing between invasive and non-invasive ventilation. This work proposes two independent gradient boosting regression models for predicting the duration of invasive and non-invasive ventilation based on commonly available ICU features. These models are trained on 2.6 million patient stays across 350 US hospitals between 2010 to 2019. The mean absolute error (MAE) for the prediction of duration was 2.08 days for invasive ventilation and 0.36 days for non-invasive ventilation. The total ventilation duration predicted by our model had MAE of 2.38 days, which outperformed the gold standard (APACHE) with MAE of 3.02 days. The feature importance analysis of the trained models showed that, for invasive ventilation, high average heart rate, diagnosis of respiratory infection and admissions from locations other than the operating room were associated with longer ventilation durations. For non-invasive ventilation, higher respiratory rates and having any GCS measurement were associated with longer durations.

3.
JCO Clin Cancer Inform ; 4: 421-435, 2020 05.
Article in English | MEDLINE | ID: mdl-32383980

ABSTRACT

PURPOSE: The availability of increasing volumes of multiomics, imaging, and clinical data in complex diseases such as cancer opens opportunities for the formulation and development of computational imaging genomics methods that can link multiomics, imaging, and clinical data. METHODS: Here, we present the Imaging-AMARETTO algorithms and software tools to systematically interrogate regulatory networks derived from multiomics data within and across related patient studies for their relevance to radiography and histopathology imaging features predicting clinical outcomes. RESULTS: To demonstrate its utility, we applied Imaging-AMARETTO to integrate three patient studies of brain tumors, specifically, multiomics with radiography imaging data from The Cancer Genome Atlas (TCGA) glioblastoma multiforme (GBM) and low-grade glioma (LGG) cohorts and transcriptomics with histopathology imaging data from the Ivy Glioblastoma Atlas Project (IvyGAP) GBM cohort. Our results show that Imaging-AMARETTO recapitulates known key drivers of tumor-associated microglia and macrophage mechanisms, mediated by STAT3, AHR, and CCR2, and neurodevelopmental and stemness mechanisms, mediated by OLIG2. Imaging-AMARETTO provides interpretation of their underlying molecular mechanisms in light of imaging biomarkers of clinical outcomes and uncovers novel master drivers, THBS1 and MAP2, that establish relationships across these distinct mechanisms. CONCLUSION: Our network-based imaging genomics tools serve as hypothesis generators that facilitate the interrogation of known and uncovering of novel hypotheses for follow-up with experimental validation studies. We anticipate that our Imaging-AMARETTO imaging genomics tools will be useful to the community of biomedical researchers for applications to similar studies of cancer and other complex diseases with available multiomics, imaging, and clinical data.


Subject(s)
Glioblastoma , Imaging Genomics , Biomarkers , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Humans , Radiography , Software
4.
Eur J Neurosci ; 50(8): 3235-3250, 2019 10.
Article in English | MEDLINE | ID: mdl-31273853

ABSTRACT

Ankle joint plays a critical role in daily activities involving interactions with environment using force and position control. Neuromechanical dysfunctions (e.g., due to stroke or brain injury), therefore, have a major impact on individuals' quality of life. The effective design of neuro-rehabilitation protocols for robotic rehabilitation platforms relies on understanding the control characteristics of the ankle joint in interaction with external environment using force and position, as the findings in upper limb may not be generalizable to the lower limb. This study aimed to characterize the skilled performance of ankle joint in visuomotor position and force control. A two-degree-of-freedom (DOF) robotic footplate was used to measure individuals' force and position. Healthy individuals (n = 27) used ankle force or position for point-to-point and tracking control tasks in 1-DOF and 2-DOF virtual game environments. Subjects' performance was quantified as a function of accuracy and completion time. In contrast to comparable performance in 1-DOF control tasks, the performance in 2-DOF tasks was different and had characteristic patterns in the position and force conditions, with a significantly better performance for position. Subjective questionnaires on the perceived difficulty matched the objective experimental results, suggesting that the poor performance in force control was not due to experimental set-up or fatigue but can be attributed to the different levels of challenge needed in neural control. It is inferred that in visuomotor coordination, the neuromuscular specialization of ankle provides better control over position rather than force. These findings can inform the design of neuro-rehabilitation platforms, selection of effective tasks and therapeutic protocols.


Subject(s)
Ankle Joint , Motor Skills , Visual Perception , Adult , Biomechanical Phenomena , Female , Humans , Isometric Contraction , Male , Motor Activity , Neurological Rehabilitation , Range of Motion, Articular , Robotics , Surveys and Questionnaires , Therapy, Computer-Assisted , Video Games , Young Adult
5.
Gastroenterology ; 157(2): 537-551.e9, 2019 08.
Article in English | MEDLINE | ID: mdl-30978357

ABSTRACT

BACKGROUND & AIMS: The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS: Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS: We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate ß-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS: We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.


Subject(s)
Hepacivirus/pathogenicity , Hepatitis C, Chronic/pathology , Hepatocytes/pathology , Liver/pathology , Animals , Cell Line, Tumor , Datasets as Topic , Disease Models, Animal , Gene Expression Profiling , Glucose/metabolism , Hepatitis C, Chronic/metabolism , Hepatitis C, Chronic/virology , Hepatocytes/transplantation , Hepatocytes/virology , Humans , Liver/cytology , Liver/virology , Metabolomics , Mice , Peroxisomes/metabolism , Peroxisomes/pathology , Proteomics , STAT3 Transcription Factor/metabolism , Transplantation Chimera
6.
Hum Mov Sci ; 64: 221-229, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784893

ABSTRACT

Previous studies suggest that functional ankle instability (FAI) may be associated with deficits in the ability to sense muscle forces. We tested individuals with FAI to determine if they have reduced ability to control ankle muscle forces, which is a function of force sense. Our test was performed isometrically to minimize the involvement of joint position sense and kinesthesia. A FAI group and a control group were recruited to perform an ankle force control task using a platform-based ankle robot. They were asked to move a cursor to hit 24 targets as accurately and as fast as possible in a virtual maze. The cursor movement was based on the direction and magnitude of the forces applied to the robot. Participants underwent three conditions: pre-test (baseline), practice (skill acquisition), and post-test (post skill acquisition). The force control ability was quantified based on the accuracy performance during the task. The accuracy performance was negatively associated with the collision count of the cursor with the maze wall. The FAI group showed reduced ability to control ankle muscle forces compared to the control group in the pre-test condition, but the difference became non-significant in the post-test condition after practice. The change in performance before and after practice may be due to different degrees of reliance on force sense.


Subject(s)
Ankle Injuries/physiopathology , Ankle Joint/physiology , Joint Instability/physiopathology , Muscle, Skeletal/physiology , Ankle Joint/physiopathology , Ankle Joint/radiation effects , Biomechanical Phenomena/physiology , Female , Humans , Kinesthesis/physiology , Male , Movement/physiology , Muscle Strength/physiology , Young Adult
7.
IEEE J Transl Eng Health Med ; 6: 2800711, 2018.
Article in English | MEDLINE | ID: mdl-30443441

ABSTRACT

Electrocardiogram, electrodermal activity, electromyogram, continuous blood pressure, and impedance cardiography are among the most commonly used peripheral physiological signals (biosignals) in psychological studies and healthcare applications, including health tracking, sleep quality assessment, disease early-detection/diagnosis, and understanding human emotional and affective phenomena. This paper presents the development of a biosignal-specific processing toolbox (Bio-SP tool) for preprocessing and feature extraction of these physiological signals according to the state-of-the-art studies reported in the scientific literature and feedback received from the field experts. Our open-source Bio-SP tool is intended to assist researchers in affective computing, digital and mobile health, and telemedicine to extract relevant physiological patterns (i.e., features) from these biosignals semi-automatically and reliably. In this paper, we describe the successful algorithms used for signal-specific quality checking, artifact/noise filtering, and segmentation along with introducing features shown to be highly relevant to category discrimination in several healthcare applications (e.g., discriminating patterns associated with disease versus non-disease). Further, the Bio-SP tool is a publicly-available software written in MATLAB with a user-friendly graphical user interface (GUI), enabling future crowd-sourced modification to these tools. The GUI is compatible with MathWorks Classification Learner app for inference model development, such as model training, cross-validation scheme farming, and classification result computation.

8.
Inform Med Unlocked ; 12: 44-55, 2018.
Article in English | MEDLINE | ID: mdl-35036518

ABSTRACT

Quasi-static, pulmonary pressure-volume (P-V) curves were combined with a respiratory system model to analyze tidal pressure cycles, simulating mechanical ventilation of patients with acute respiratory distress syndrome (ARDS). Two important quantities including 1) tidal recruited volume and 2) tidal hyperinflated volume were analytically computed by integrating the distribution of alveolar elements over the affected pop-open pressure range. We analytically predicted the tidal recruited volume of four canine subjects and compared our results with similar experimental measurements on canine models for the validation. We then applied our mathematical model to the P-V data of ARDS populations in four stages of Early ARDS, Deep Knee, Advanced ARDS and Baby Lung to quantify the tidal recruited volume and tidal hyperinflated volume as an indicator of ventilator-induced lung injury (VILI). These quantitative predictions based on patient-specific P-V data suggest that the optimum parameters of mechanical ventilation including PEEP and Tidal Pressure (Volume) are largely varying among ARDS population and are primarily influenced by the degree in the severity of ARDS.

9.
Respir Physiol Neurobiol ; 248: 36-42, 2018 01.
Article in English | MEDLINE | ID: mdl-29174041

ABSTRACT

Quasi-static, pulmonary pressure-volume (P-V) curves are combined with a respiratory system model to analyze characteristics of patients with acute respiratory distress syndrome (ARDS). It is shown that there exist distinct differences between healthy- and injured-respiratory system in the order of magnitudes of parameters of their P-V model equation. Four stages of ARDS (Early ARDS, Deep knee, Advanced ARDS and Baby lung) are defined quantitatively in terms of these parameters.


Subject(s)
Models, Biological , Positive-Pressure Respiration , Respiratory Distress Syndrome/physiopathology , Respiratory Mechanics/physiology , Animals , Humans , Lung Volume Measurements
10.
Hum Mov Sci ; 57: 40-49, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29136539

ABSTRACT

While asymmetries have been observed between the dominant and non-dominant legs, it is unclear whether they have different abilities in isometric force control (IFC). The purpose of this study was to compare ankle IFC between the legs. IFC is important for stabilization rather than object manipulation, and people typically use their non-dominant leg for stabilization tasks. Additionally, studies suggested that a limb can better acquire a motor task when the control mechanism of the task is related to what the limb is specialized for. We hypothesized that the non-dominant leg would better (1) control ankle IFC with speed and accuracy, and (2) acquire an ankle IFC skill through direct learning and transfer of learning. Two participant groups practiced an IFC task using either their dominant or non-dominant ankle. In a virtual environment, subjects moved a cursor to hit 24 targets in a maze by adjusting the direction and magnitude of ankle isometric force with speed (measured by the time required to hit all targets or movement time) and accuracy (number of collisions to a maze wall). Both groups demonstrated similar movement time and accuracy between the dominant and non-dominant limbs before practicing the task. After practice, both groups showed improvement in both variables on both the practiced and non-practiced sides (p < .01), but no between-group difference was detected in the degree of improvement on each side. The ability to control and acquire the IFC skill was similar between the legs, which did not support the brain is lateralized for ankle IFC.


Subject(s)
Ankle Joint/physiology , Ankle/physiology , Isometric Contraction/physiology , Leg/physiology , Movement , Adolescent , Adult , Female , Functional Laterality , Humans , Learning , Male , Motor Skills , Reproducibility of Results , Transfer, Psychology , Young Adult
11.
Article in English | MEDLINE | ID: mdl-25570176

ABSTRACT

An estimated of 2,000,000 acute ankle sprains occur annually in the United States. Furthermore, ankle disabilities are caused by neurological impairments such as traumatic brain injury, cerebral palsy and stroke. The virtually interfaced robotic ankle and balance trainer (vi-RABT) was introduced as a cost-effective platform-based rehabilitation robot to improve overall ankle/balance strength, mobility and control. The system is equipped with 2 degrees of freedom (2-DOF) controlled actuation along with complete means of angle and torque measurement mechanisms. Vi-RABT was used to assess ankle strength, flexibility and motor control in healthy human subjects, while playing interactive virtual reality games on the screen. The results suggest that in the task with 2-DOF, subjects have better control over ankle's position vs. force.


Subject(s)
Ankle/physiology , Motor Activity/physiology , Robotics/methods , Biomechanical Phenomena , Humans , Range of Motion, Articular , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...