Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 128(14): 5919-5926, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38629116

ABSTRACT

Light is a versatile tool to remotely activate molecules adsorbed on a surface, for example, to trigger their polymerization. Here, we explore the spatial distribution of light-induced chemical reactions on a Au(111) surface. Specifically, the covalent on-surface polymerization of an anthracene derivative in the submonolayer coverage range is studied. Using scanning tunneling microscopy and X-ray photoemission spectroscopy, we observe a substantial increase of the local molecular coverage with the sample illumination time at the center of the laser spot. We find that the interplay between thermally induced diffusion and the reduced mobility of reaction products steers the accumulation of material. Moreover, the debromination of the adsorbed species never progresses to completion within the experiment time, despite a long irradiation of many hours.

2.
J Phys Chem C Nanomater Interfaces ; 125(41): 22554-22561, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34712378

ABSTRACT

On-surface polymerization is a powerful bottom-up approach that allows for the growth of covalent architectures with defined properties using the two-dimensional confinement of a highly defined single-crystal surface. Thermal heating is the preferred approach to initiate the reaction, often via cleavage of halogen substituents from the molecular building blocks. Light represents an alternative stimulus but has, thus far, only rarely been used. Here, we present a direct comparison of on-surface polymerization of dibromo-anthracene molecules, induced either thermally or by light, and study the differences between the two approaches. Insight is obtained by a combination of scanning tunneling microscopy, locally studying the polymer shape and size, and X-ray photoelectron spectroscopy, which identifies bond formation by averaging over large surface areas. While the polymer length increases slowly with the sample heating temperature, illumination promotes only the formation of short covalent structures, independent of the duration of light exposure. Moreover, irradiation with UV light at different sample temperatures highlights the important role of molecular diffusion across the surface.

3.
Angew Chem Int Ed Engl ; 57(46): 15034-15039, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30187995

ABSTRACT

Azobenzene is a prototypical molecular switch that can be reversibly photoisomerized between the nearly planar and apolar trans form, and the distorted, polar cis form. Most studies related to azobenzene derivatives have focused on planar adsorbed molecules. We present herein the study of a three-dimensional shape-persistent molecular architecture consisting of four tetrahedrally arranged azobenzene units that is adsorbed on a Ag(111) surface. While the azobenzenes of the tripod in contact with the surface lost their switching ability, different isomers of the upright standing arm of the tetramer were obtained reversibly and efficiently by illumination at different wavelengths, revealing time constants of only a few minutes. Diffusion on the surface was dependent on the isomeric state-trans or cis-of the upright oriented azobenzene group. Hence, molecular mobility can be modulated by its isomeric state, which suggests that molecular growth processes could be controlled by external stimuli.

4.
Phys Rev Lett ; 121(4): 047701, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30095964

ABSTRACT

We report how individual defects affect single graphene nanoribbons by scanning tunneling and atomic force microscopy pulling experiments simultaneously accessing their electrical and mechanical properties. The on-surface polymerization of the graphene nanoribbons is controlled by cooperative effects as theoretically suggested. Further, we find, with the help of atomistic simulations, that defects substantially vary the molecule-substrate coupling and drastically increase the flexibility of the graphene nanoribbons while keeping their desirable electronic properties intact.

5.
ACS Nano ; 12(2): 1821-1828, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29316393

ABSTRACT

Prototypical molecular switches such as azobenzenes exhibit two states, i.e., trans and cis, with different characteristic physical properties. In recent years various derivatives were investigated on metallic surfaces. However, bulk insulators as supporting substrate reveal important advantages since they allow electronic decoupling from the environment, which is key to control the switching properties. Here, we report on the light-induced isomerization of an azobenzene derivative on a bulk insulator surface, in this case calcite (101̅4), studied by atomic force microscopy with submolecular resolution. Surprisingly, cis isomers appear on the surface already directly after preparation, indicating kinetic trapping. The photoisomerization process is reversible, as the use of different light sources results in specific molecular assemblies of each isomer. The process turns out to be very efficient and even comparable to molecules in solution, which we assign to the rather weak molecular interaction with the insulator surface, in contrast to metals.

6.
Angew Chem Int Ed Engl ; 55(44): 13724-13728, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27633983

ABSTRACT

The covalent linking of molecular building blocks on surfaces enables the construction of specific molecular nanostructures of well-defined shape. Molecular nodes linked to various entities play a key role in such networks, but represent a particular challenge because they require a well-defined arrangement of different building blocks. Herein, we describe the construction of a chemically and geometrically well defined covalent architecture made of one central node and three molecular wires arranged in a nonsymmetrical way and thus encoding different conjugation pathways. Very different architectures of either very limited or rather extended size were obtained depending on the building blocks used for the covalent linking process on the Au(111) surface. Electrical measurements were carried out by pulling individual molecular nodes with the tip of a scanning tunneling microscope. The results of this challenging procedure indicate subtle differences if the nodes are contacted at inequivalent termini.

7.
Nat Commun ; 6: 7397, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26145188

ABSTRACT

Molecular-scale electronics is mainly concerned by understanding charge transport through individual molecules. A key issue here is the charge transport capability through a single--typically linear--molecule, characterized by the current decay with increasing length. To improve the conductance of individual polymers, molecular design often either involves the use of rigid ribbon/ladder-type structures, thereby sacrificing for flexibility of the molecular wire, or a zero band gap, typically associated with chemical instability. Here we show that a conjugated polymer composed of alternating donor and acceptor repeat units, synthesized directly by an on-surface polymerization, exhibits a very high conductance while maintaining both its flexible structure and a finite band gap. Importantly, electronic delocalization along the wire does not seem to be necessary as proven by spatial mapping of the electronic states along individual molecular wires. Our approach should facilitate the realization of flexible 'soft' molecular-scale circuitry, for example, on bendable substrates.

8.
ACS Nano ; 6(5): 4190-5, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22494431

ABSTRACT

Bistable organic molecules were deposited on a weakly binding III-V semiconductor surface and then pinned into place using individual native adatoms. These pinning atoms, positioned by atomically precise manipulation techniques in a cryogenic scanning tunneling microscope (STM) at 5 K, stabilize the π-conjugated molecule against rotation excited by the tunneling electrons. The pinning allows triggering of the molecule's intrinsic switching mechanism (a hydrogen transfer reaction) by the STM tunnel current. Density-functional theory calculations reveal that the energetics of the switching process is virtually unaffected by both the surface and the pinning atoms. Hence, we have demonstrated that individual molecules with predictable, predefined functions can be stabilized and assembled on semiconductor templates.

9.
Nano Lett ; 11(6): 2486-9, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21591678

ABSTRACT

Scanning tunneling microscopy (STM) at 5 K reveals that native atoms in the surface layer of a semiconductor crystal become bistable in vertical height when a nanostructure is assembled nearby. The binary switching of surface atoms, driven by the STM tip, changes their charge state. Coupling is facilitated by assembling adatom chains, allowing us to explore the emergence of complex multiple switching. Density-functional theory calculations rationalize the observations and a lattice-gas model predicts the cooperative behavior from first principles.


Subject(s)
Nanostructures/chemistry , Microscopy, Scanning Tunneling , Particle Size , Semiconductors , Surface Properties
10.
Phys Rev Lett ; 103(9): 096104, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19792811

ABSTRACT

The vertical manipulation of native adatoms on a III-V semiconductor surface was achieved in a scanning tunneling microscope at 5 K. Reversible repositioning of individual In atoms on InAs(111)A allows us to construct one-atom-wide In chains. Tunneling spectroscopy reveals that these chains host quantum states deriving from an adatom-induced electronic state and substantial substrate-mediated coupling. Our results show that the combined approach of atom manipulation and local spectroscopy is capable to explore atomic-scale quantum structures on semiconductor platform.

11.
Nano Lett ; 9(8): 2996-3000, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19583246

ABSTRACT

The biconformational switching of single cyclooctadiene molecules chemisorbed on a Si(001) surface was explored by quantum chemical and quantum dynamical calculations and low-temperature scanning tunneling microscopy experiments. The calculations rationalize the experimentally observed switching driven by inelastic electron tunneling (IET) at 5 K. At higher temperatures, they predict a controllable crossover behavior between IET-driven and thermally activated switching, which is fully confirmed by experiment.

12.
Phys Rev Lett ; 98(14): 146804, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17501302

ABSTRACT

Close-packed Co-Cu chains of various length and composition were assembled from single Co and Cu atoms on Cu(111) by atom manipulation in a low-temperature scanning tunneling microscope. Local spectroscopy reveals significant electronic Co-Cu coupling leading to confined quantum states delocalized along the heteroatomic chain. Composite Co-Cu chains provide a model case in which the quantum state of an atomic-scale host structure can be tuned by the controlled incorporation of foreign atoms.

13.
Nano Lett ; 6(7): 1408-14, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16834420

ABSTRACT

Understanding and controlling the chemical reactivity of carbon nanotubes (CNTs) is a fundamental requisite to prepare novel nanoscopic structures with practical uses in materials applications. Here, we present a comprehensive microscopic and spectroscopic characterization of carbon nanotubes which have been chemically modified. Specifically, scanning tunneling microscopy (STM) investigations of short-oxidized single-walled carbon nanotubes (SWNTs) functionalized with aliphatic chains via amide reaction reveal the presence of bright lumps both on the sidewalls and at the tips. The functionalization pattern is consistent with the oxidation reaction which mainly occurs at the nanotube tips. Thermogravimetric analysis (TGA), steady-state electronic absorption (UV-vis-NIR), and Raman spectroscopic studies confirm the STM observations.


Subject(s)
Nanotubes, Carbon/chemistry , Amides/chemistry , Microscopy, Scanning Tunneling , Nanotubes, Carbon/ultrastructure , Spectrum Analysis, Raman , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...