Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38518775

ABSTRACT

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Basement Membrane/metabolism , Nervous System
4.
Pediatr Blood Cancer ; 64(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28130858

ABSTRACT

BACKGROUND: Two chromosome anomalies are frequent in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS): an isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q). These anomalies are associated with a lower risk of developing myelodysplasia (MDS) and/or acute myeloid leukemia. The chromosome anomalies may be due to an SDS-specific karyotype instability, reflected also by anomalies that are not clonal, but found in single cells in the BM or in peripheral blood (PB). PROCEDURE: Starting in 1999, we have monitored the cytogenetic picture of a cohort of 91 Italian patients with SDS by all suitable cytogenetic and molecular methods. RESULTS: Here, we report clonal chromosome anomalies that are different from the aforementioned, as well as changes found in single cells in BM/PB of the same patients. CONCLUSIONS: Some of the newly recognized clonal anomalies in BM reported here are recurrent, especially unbalanced structural anomalies of chromosome 7, a further complex rearrangement of the del(20)(q) with duplicated and deleted portions, and an unbalanced translocation t(3;6), with partial trisomy of the long arm of chromosome 3 and partial monosomy of the long arm of chromosome 6. Firm conclusions on the possible prognostic relevance of these anomalies would require further study with larger patient cohorts, but our data are sufficient to suggest that these patients necessitate more frequent cytogenetic monitoring. The results on anomalies found in single cells confirm the presence of an SDS-specific karyotype instability.


Subject(s)
Bone Marrow Diseases/genetics , Chromosome Aberrations , Exocrine Pancreatic Insufficiency/genetics , Lipomatosis/genetics , Abnormal Karyotype , Adolescent , Adult , Child , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Longitudinal Studies , Male , Oligonucleotide Array Sequence Analysis , Recurrence , Shwachman-Diamond Syndrome , Young Adult
5.
Genes Chromosomes Cancer ; 56(1): 51-58, 2017 01.
Article in English | MEDLINE | ID: mdl-27553422

ABSTRACT

Shwachman-Diamond syndrome (SDS) (OMIM 260400) is a rare autosomal recessive disease characterized by exocrine pancreatic insufficiency, skeletal, and hematological abnormalities and bone marrow (BM) dysfunction. Mutations in the SBDS gene cause SDS. Clonal chromosome anomalies are often present in BM, i(7)(q10) and del(20q) being the most frequent ones. We collected 6 SDS cases with del(20q): a cluster of imprinted genes, including L3MBTL1 and SGK2 is present in the deleted region. Only the paternal allele is expressed for these genes. Based on these data, we made the hypothesis that the loss of this region, in relation to parental origin of deletion, may be of relevance for the hematological phenotype. By comparing hematological data of our 6 cases with a group of 20 SDS patients without evidence of del(20q) in BM, we observed a significant difference for Hb levels (P < 0.012), and a difference slightly above the significance level for RBC counts (P < 0.053): in both cases the values were higher in patients with del(20q). We also report preliminary evidence for an increased number of BFU-E colonies in cases with paternal deletion, data on the presence of the deletion in colonies and in mature circulating lymphocytes. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Marrow Diseases/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Human, Pair 20/genetics , Exocrine Pancreatic Insufficiency/genetics , Genomic Imprinting , Immediate-Early Proteins/genetics , Lipomatosis/genetics , Protein Serine-Threonine Kinases/genetics , Sequence Deletion , Biomarkers, Tumor , Chromosome Aberrations , Follow-Up Studies , Humans , Mutation/genetics , Neoplasm Staging , Phenotype , Prognosis , Repressor Proteins , Retrospective Studies , Shwachman-Diamond Syndrome , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...