Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Public Health Genomics ; 13(7-8): 514-23, 2010.
Article in English | MEDLINE | ID: mdl-20484876

ABSTRACT

AIM: Our goal wasto produce a field synopsis of genetic associations with preterm birth and to set up a publicly available online database summarizing the data. METHODS: We performed a systematic review and meta-analyses to identify genetic associations with preterm birth. We have set up a publicly available online database of genetic association data on preterm birth called PTBGene (http://ric.einstein.yu.edu/ptbgene/index.html) and report on a structured synopsis thereof as of December 1, 2008. RESULTS: Data on 189 polymorphisms in 84 genes have been included and 36 meta-analyses have been performed. Five gene variants (4 in maternal DNA, one in newborn DNA) have shown nominally significant associations, but all have weak epidemiological credibility. CONCLUSION: After publishing this field synopsis, the PTBGene database will be regularly updated to keep track of the evolving evidence base of genetic factors in preterm birth with the goal of promoting knowledge sharing and multicenter collaboration among preterm birth research groups.


Subject(s)
Genes/genetics , Genetic Predisposition to Disease , Knowledge Bases , Polymorphism, Genetic/genetics , Premature Birth/genetics , Female , Genome-Wide Association Study , Humans , Infant, Newborn , Meta-Analysis as Topic , Pregnancy
2.
Wound Repair Regen ; 4(1): 75-81, 1996.
Article in English | MEDLINE | ID: mdl-17129351

ABSTRACT

After amputation of a salamander limb, the extracellular matrix undergoes remodeling. The extracellular matrix that maintains the differentiated state of limb tissues is broken down and replaced by an extracellular matrix essential for dedifferentiation and blastema formation. We used monoclonal antibodies in immunohistochemistry methods and riboprobes in in situ hybridization to evaluate the upregulation of tenascin, type XII collagen, fibronectin, and the MT5 antigen. The Stump 1 antigen, an extracellular matrix protein that is abundant in the normal limb, is downregulated during regeneration and reappears late in regeneration as differentiation occurs. In the embryo, the Stump 1 antigen is also absent from the early limb bud and first appears during differentiation stages. Tenascin and fibronectin are also upregulated in the limb bud of the embryo, and these two extracellular matrix proteins appear to function during limb regeneration in adults and limb development in embryos. However, type XII collagen and the MT5 antigen are not found in the limb bud, indicating that type XII collagen and the MT5 antigen have roles in the regenerating limb but not in the embryo limb bud.

3.
Dev Dyn ; 202(2): 153-64, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7734733

ABSTRACT

Using monoclonal antibodies (mAbs) reactive to newt limb regenerates, we hope to gain insight into the identity and function of regeneration significant molecules. mAb MT4 (matrix 4) identifies an extracellular matrix (ECM) protein that is strongly up-regulated first in the distal stump and then in the blastema during regeneration. Within the first 24 hr after amputation the MT4 antigen is localized to an acellular space beneath the wound epithelium, and first appears in the basal cells of the wound epithelium between days 5 and 7. At mid-bud blastema stages, the MT4 antigen is homogeneously distributed as thin fibers in the blastema ECM, and is later largely restricted to the distal tip of the blastema and the areas of cartilage condensation. After extraction and immunoblotting, the MT4 antigen was observed as three reduced species of M(r) 225, 250, and 260. Taken together, the immunoblot and immunocytochemistry results suggested that mAb MT4 recognized newt fibronectin (FN). Sequence from a cDNA (NvFN.10) obtained by screening a newt blastema cDNA expression library with mAb MT4 conclusively identified the MT4 antigen as FN. To further investigate the expression of FN in regeneration, cDNA NvFN.10 was used to construct a riboprobe and in situ hybridization was done. In the unamputated limb only a few scattered cells expressed the FN gene. Within the first 3 days after amputation strong hybridization signal was observed in the basal cells of the wound epithelium. Most of the stump cells that dedifferentiated and accumulated beneath the wound epithelium at 7 days expressed the FN gene, while the basal cells of the wound epithelium maintained their expression. At mid- and late-bud blastema stages the vast majority of the blastema cells were strongly expressing the FN gene, but the wound epithelial cells now showed only weak FN transcription. Thus initially FN comes from the plasma. Then FN is synthesized by both the wound epithelium and mesenchyme. Finally, at blastema stages FN is produced primarily by the mesenchyme. The expression pattern of FN throughout regeneration suggests that this glycoprotein has roles in wound epithelial and mesenchymal cell migration and mesenchymal cell proliferation and differentiation.


Subject(s)
Extremities/physiology , Fibronectins/analysis , Regeneration/physiology , Salamandridae/physiology , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary , Extremities/pathology , Fibronectins/biosynthesis , Fibronectins/genetics , Immunohistochemistry , In Situ Hybridization , Molecular Sequence Data , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...