Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 21(1): e2000249, 2021 01.
Article in English | MEDLINE | ID: mdl-33015960

ABSTRACT

Bone loss through traumatic injury is a significant clinical issue. Researchers have created many scaffold types to mimic an extracellular matrix to provide structural support for the formation of new bone, however functional regeneration of larger scaffolds has not been fully achieved. Newer scaffolds aim to deliver bioactive molecules to improve tissue regeneration. To achieve a more comprehensive regenerative response, a magnetically triggerable polymeric microparticle platform is developed for the on-demand release of a complex mixture of isolated human placental proteins. This system is composed of polycaprolactone (PCL) microparticles, encapsulating magnetic nanoparticles (MNPs), and placental proteins. When subjected to an alternating magnetic field (AMF), the MNPs heat and melt the PCL, enhancing the diffusion of proteins from microparticles. When the field is off, the PCL re-solidifies. This potentially allows for cyclic drug delivery. Here the design, synthesis, and proof-of-concept experiments for this system are reported. In addition, it is shown that the proteins retain function after being magnetically released. The ability to trigger the release of complex protein mixtures on-demand may provide a significant advantage with wounds where stagnation of healing processes can occur (e.g., large segmented bone defects).


Subject(s)
Bone Regeneration/drug effects , Drug Delivery Systems , Pregnancy Proteins/pharmacology , Tissue Engineering , Female , Humans , Magnetic Fields , Magnetics , Nanoparticles/chemistry , Polyesters/pharmacology , Pregnancy Proteins/chemistry , Pregnancy Proteins/genetics , Tissue Scaffolds/chemistry
2.
Int J Hyperthermia ; 36(1): 687-701, 2019.
Article in English | MEDLINE | ID: mdl-31340687

ABSTRACT

Background: Magnetic nanoparticles (MNPs) generate heat when exposed to an alternating magnetic field. Consequently, MNPs are used for magnetic fluid hyperthermia (MFH) for cancer treatment, and have been shown to increase the efficacy of chemotherapy and/or radiation treatment in clinical trials. A downfall of current MFH treatment is the inability to deliver sufficient heat to the tumor due to: insufficient amounts of MNPs, unequal distribution of MNPs throughout the tumor, or heat loss to the surrounding environment. Objective: In this study, the objective was to identify MNPs with high heating efficiencies quantified by their specific absorption rate (SAR). Methods: A panel of 31 commercially available MNPs were evaluated for SAR in two different AMFs. Additionally, particle properties including iron content, hydrodynamic diameter, core diameter, magnetic diameter, magnetically dead layer thickness, and saturation mass magnetization were investigated. Results: High SAR MNPs were identified. For SAR calculations, the initial slope, corrected slope, and Box-Lucas methods were used and validated using a graphical residual analysis, and the Box-Lucas method was shown to be the most accurate. Other particle properties were identified and examined for correlations with SAR values. Positive correlations of particle properties with SAR were found, including a strong correlation for the magnetically dead layer thickness. Conclusions: This work identified high SAR MNPs for hyperthermia, and provides insight into properties which correlate with SAR which will be valuable for synthesis of next-generation MNPs. SAR calculation methods must be standardized, and this work provides an in-depth analysis of common calculation methods.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Magnetic Fields , Magnetic Phenomena , Magnetite Nanoparticles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...