Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 117: 111276, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919640

ABSTRACT

This paper investigates the characterization and numerical modeling of the elastic behavior of the human humerus bone using a recently developed micromechanical approach coupled to nanoindentation measurements. At first, standard three-point bending experiments were conducted under low static loading, using several humerus diaphysis in order to identify the apparent elastic modulus of the bone in static regime. Then, a drop tower impact experiment was used on the same set of humerus diaphysis specimens, in order to assess the elastic modulus in dynamic regime. These measurements will be used as reference bases for comparison purpose. The originality of this work, lies in the coupling between a two-phase micromechanical approach based on Mori-Tanaka homogenization scheme for cylindrical voids and nanoindentation measurements of the elastic modulus of the bone matrix phase. This model has been implemented using a user defined material subroutine VMAT in ABAQUS© Explicit code. The bone mechanical response prediction using the proposed methodology was validated against previous standard experimental data. Finally, it was shown that the numerical predictions are consistent with the physical measurements obtained on human humerus via the good estimation of the ultimate impact load.


Subject(s)
Humerus , Biomechanical Phenomena , Elastic Modulus , Finite Element Analysis , Humans , Stress, Mechanical
2.
J Mech Behav Biomed Mater ; 63: 44-55, 2016 10.
Article in English | MEDLINE | ID: mdl-27341290

ABSTRACT

The use of highly sensitive soft materials has become increasingly apparent in the last few years in numerous industrial fields, due to their viscous and damping nature. Unfortunately these materials remain difficult to characterize using conventional techniques, mainly because of the very low internal forces supported by these materials especially under high strain-rates of deformation. The aim of this work is to investigate the dynamic response of a polymer gel brain analog material under specific rotational-impact experiments. The selected polymer gel commercially known as Sylgard 527 has been studied using a specific procedure for its experimental characterization and numerical modeling. At first an indentation experiment was conducted at several loading rates to study the strain rate sensitivity of the Sylgard 527 gel. During the unloading several relaxation tests were performed after indentation, to assess the viscous behavior of the material. A specific numerical procedure based on moving least square approximation and response surface method was then performed to determine adequate robust material parameters of the Sylgard 527 gel. A sensitivity analysis was assessed to confirm the robustness of the obtained material parameters. For the validation of the obtained material model, a second experiment was conducted using a dynamic rotational loading apparatus. It consists of a metallic cylindrical cup filled with the polymer gel and subjected to an eccentric transient rotational impact. Complete kinematics of the cup and the large strains induced in the Sylgard 527 gel, have been recorded at several patterns by means of optical measurement. The whole apparatus was modeled by the Finite Element Method using explicit dynamic time integration available within Ls-dyna(®) software. Comparison between the physical and the numerical models of the Sylgard 527 gel behavior under rotational choc shows excellent agreements.


Subject(s)
Gels/chemistry , Models, Anatomic , Polymers/chemistry , Biomechanical Phenomena , Brain , Finite Element Analysis , Rotation , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...