Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 19(7): 1604-1615, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38980123

ABSTRACT

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.


Subject(s)
Proteolysis , Humans , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Proteasome Endopeptidase Complex/metabolism
2.
ACS Med Chem Lett ; 14(6): 711-718, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37312853

ABSTRACT

The complexity of new therapeutics continues to increase and the timeline for the discovery of these therapeutics continues to shrink. This creates demand for new analytical techniques to facilitate quicker discovery and development of novel drugs. Mass spectrometry is one of the most prolific analytical techniques that has been applied across the entire drug discovery pipeline. New mass spectrometers and the associated methods for sampling have been introduced at a rate that keeps pace with new chemistries, therapeutic types, and screening practices used by modern drug hunters. This microperspective covers application and implementation of new mass spectrometry workflows that enable current and future efforts in screening and synthesis for drug discovery.

3.
Anal Chem ; 89(20): 10661-10666, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28872298

ABSTRACT

In this study, a solid-phase microextraction (SPME) method was developed for the purification of mRNA (mRNA) from complex biological samples using a real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for quantification. The chemical composition of the polymeric ionic liquid (PIL) and a polyacrylate (PA) SPME sorbent coating was optimized to enhance the extraction performance. Of the studied SPME sorbent coatings, the PIL containing carboxylic acid moieties in the monomer and halide-based anions extracted the highest amount of mRNA from aqueous solutions, whereas the native PA fiber showed the lowest extraction efficiency. On the basis of RT-qPCR data, electrostatic interactions and an ion-exchange mechanism between the negatively charged phosphate backbone of RNA and the PIL cation framework were the major driving forces for mRNA extraction. The optimized PIL-based SPME method purified a high quantity of mRNA from crude yeast cell lysate compared to a phenol/chloroform extraction method. The reusability and robustness of PIL-based SPME for RNA analysis represents a significant advantage over conventional silica-based solid-phase RNA extraction kits. The selectivity of the SPME method toward mRNA was enhanced by functionalizing the PA sorbent with oligo dT20 using carbodiimide-based amide linker chemistry. The oligo dT20-modified PA sorbent coating demonstrated superior extraction performance than the native PA sorbent coating with quantification cycle (Cq) values 33.74 ± 0.24 and 39, respectively. The modified PA sorbent extracted sufficient mRNA from total RNA at concentrations as low as 5 ng µL-1 in aqueous solutions without the use of organic solvents and time-consuming multiple centrifugation steps that are required in traditional RNA extraction methods.


Subject(s)
RNA/isolation & purification , Solid Phase Microextraction/methods , Acrylic Resins/chemistry , Ionic Liquids/chemistry , Polymers/chemistry , RNA, Messenger/isolation & purification , Saccharomyces cerevisiae/genetics
4.
Anal Bioanal Chem ; 409(21): 4983-4991, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28634762

ABSTRACT

In this study, a series of magnetic ionic liquids (MILs) were investigated for the extraction and preconcentration of bacteria from aqueous samples. By dispersing small volumes (e.g., 15 µL) of MIL within an aqueous cell suspension, bacteria were rapidly extracted and isolated using a magnetic field. Of the seven hydrophobic MILs examined, the trihexyl(tetradecyl)phosphonium Ni(II) hexafluoroacetylacetonate ([P66614+][Ni(hfacac)3-]) MIL exhibited the greatest enrichment of viable Escherichia coli K12 when coupled with microbiological culture as the detection method. The MIL-based strategy was applied for the preconcentration of E. coli from aqueous samples to obtain enrichment factors (E F) as high as 44.6 in less than 10 min. The MIL extraction approach was also interfaced with polymerase chain reaction (PCR) amplification where the positive detection of E. coli was achieved with the [P66614+][Co(hfacac)3-], [P66614+][Ni(hfacac)3-], [P66614+][Dy(hfacac)4-], and [P66614+][Nd(hfacac)4-] MILs. While direct sampling of an aqueous cell suspension at a concentration of 1.68 × 104 colony-forming units (CFUs) mL-1 yielded no amplicon when subjected to PCR, extraction of the sample with the [P66614+][Ni(hfacac)3-] MIL under optimized conditions provided sufficient enrichment of E. coli for amplicon detection. Importantly, the enrichment of bacteria using the Ni(II)-, Co(II)-, and Dy(III)-based MILs was compatible with real-time quantitative PCR amplification to dramatically improve sample throughput and lower detection limits to 1.0 × 102 CFUs mL-1. The MIL-based method is much faster than existing enrichment approaches that typically require 24-h cultivation times prior to detection and could potentially be applied for the preconcentration of a variety of Gram-negative bacteria from aqueous samples. Graphical abstract Magnetic ionic liquid solvents rapidly preconcentrate viable E. coli cells for unambiguous pathogen detection using microbiological culture and qPCR.


Subject(s)
Escherichia coli/isolation & purification , Ionic Liquids/chemistry , Magnetics , Real-Time Polymerase Chain Reaction/methods , Electrophoresis, Agar Gel , Hydrophobic and Hydrophilic Interactions , Limit of Detection
5.
J Pharm Biomed Anal ; 145: 879-886, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29843206

ABSTRACT

In this study, two ionic liquids (ILs), 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([BMIM][NTf2]) and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl]imide ([P66614][NTf2]) were examined as contemporary diluents for residual solvent analysis using static headspace gas chromatography (SHS-GC) coupled with flame ionization detection (FID). ILs are a class of non-molecular solvents featuring negligible vapor pressure and high thermal stabilities. Owing to these favorable properties, ILs have potential to enable superior sensitivity and reduced interference, compared to conventional organic diluents, at high headspace incubation temperatures. By employing the [BMIM][NTf2] IL as a diluent, a 25-fold improvement in limit of detection (LOD) was observed with respect to traditional HS-GC diluents, such as N-methylpyrrolidone (NMP). The established IL-based method demonstrated LODs ranging from 5.8 parts-per-million (ppm) to 20ppm of residual solvents in drug substances. The optimization of headspace extraction conditions was performed prior to method validation. An incubation temperature of 140°C and a 15min incubation time provided the best sensitivity for the analysis. Under optimized experimental conditions, the mass of residual solvents partitioned in the headspace was higher when using [BMIM][NTf2] than NMP as a diluent. The analytical performance was demonstrated by determining the repeatability, accuracy, and linearity of the method. Linear ranges of up to two orders of magnitude were obtained for class 3 solvents. Excellent analyte recoveries were obtained in the presence of three different active pharmaceutical ingredients. Owing to its robustness, high throughput, and superior sensitivity, the HS-GC IL-based method can be used as an alternative to existing residual solvent methods.


Subject(s)
Chromatography, Gas/methods , Drug Contamination , Imidazoles/chemistry , Ionic Liquids/chemistry , Pharmaceutical Preparations/chemistry , Solvents/analysis , Sulfonamides/chemistry , Flame Ionization , Indomethacin/chemistry , Limit of Detection , Pyrrolidinones/chemistry , Quinidine/chemistry
6.
Anal Chim Acta ; 934: 9-21, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27506339

ABSTRACT

Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties.

7.
Anal Chim Acta ; 934: 106-13, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27506350

ABSTRACT

This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 µL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 µL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 µg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion.


Subject(s)
Ionic Liquids/chemistry , Liquid Phase Microextraction , Polycyclic Aromatic Hydrocarbons/analysis , Magnetic Phenomena , Molecular Structure , Solvents/chemistry
8.
Anal Chem ; 88(15): 7813-20, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27373463

ABSTRACT

The determination of extremely small quantities of DNA from complex biological sample matrices represents a significant bottleneck in nucleic acid analysis. In this study, polymeric ionic liquid (PIL)-based solid-phase microextraction (SPME) was applied for the extraction and purification of DNA from crude bacterial cell lysate with subsequent quantification by real-time PCR (qPCR) analysis. Using an on-fiber ultraviolet initiated polymerization technique, eight different PIL sorbent coatings were generated and their DNA extraction performance evaluated using qPCR. The PIL sorbent coating featuring halide anions and carboxylic acid groups in the cationic portion exhibited superior DNA extraction capabilities when compared to the other studied PILs and a commercial polyacrylate SPME fiber. Electrostatic interactions as well as an ion-exchange mechanism were identified as the driving forces in DNA extraction by the PIL sorbents. The selectivity of the PIL sorbent coating for DNA was demonstrated in the presence of PCR inhibitors at high concentration, where a quantifiable amount of template DNA was extracted from aqueous samples containing CaCl2 and FeCl3. Furthermore, the PIL-based SPME method was successfully applied for the extraction of DNA from crude bacterial cell lysate spiked with 1 pg mL(-1) template DNA without requiring the use of organic solvents or centrifugation steps. Following PIL-based SPME of DNA from a dilute cell lysate, the qPCR amplification efficiency was determined to be 100.3%, demonstrating the feasibility of the developed method to extract high purity DNA from complex sample matrices.


Subject(s)
DNA/analysis , Real-Time Polymerase Chain Reaction , DNA/isolation & purification , Escherichia coli/genetics , Ion Exchange , Ionic Liquids/chemistry , Polymers/chemistry , Solid Phase Microextraction , Static Electricity
9.
Chem Commun (Camb) ; 51(94): 16771-3, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26434366

ABSTRACT

A polymerase chain reaction (PCR) buffer was systematically designed to relieve the inhibition caused by hydrophobic magnetic ionic liquids (MILs). We describe a simple, rapid method for MIL-based plasmid DNA extraction from crude bacterial cell lysate in which DNA-enriched MIL is transferred directly to a PCR tube for analysis.


Subject(s)
DNA/chemistry , Ionic Liquids/chemistry , Magnetics , Electrochemical Techniques , Molecular Structure , Polymerase Chain Reaction , Purine-Nucleoside Phosphorylase/metabolism , Solvents/chemistry , Time Factors
10.
Anal Chem ; 87(3): 1552-9, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25582771

ABSTRACT

DNA extraction represents a significant bottleneck in nucleic acid analysis. In this study, hydrophobic magnetic ionic liquids (MILs) were synthesized and employed as solvents for the rapid and efficient extraction of DNA from aqueous solution. The DNA-enriched microdroplets were manipulated by application of a magnetic field. The three MILs examined in this study exhibited unique DNA extraction capabilities when applied toward a variety of DNA samples and matrices. High extraction efficiencies were obtained for smaller single-stranded and double-stranded DNA using the benzyltrioctylammonium bromotrichloroferrate(III) ([(C8)3BnN(+)][FeCl3Br(-)]) MIL, while the dicationic 1,12-di(3-hexadecylbenzimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide bromotrichloroferrate(III) ([(C16BnIM)2C12(2+)][NTf2(-), FeCl3Br(-)]) MIL produced higher extraction efficiencies for larger DNA molecules. The MIL-based method was also employed for the extraction of DNA from a complex matrix containing albumin, revealing a competitive extraction behavior for the trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P6,6,6,14(+)][FeCl4(-)]) MIL in contrast to the [(C8)3BnN(+)][FeCl3Br(-)] MIL, which resulted in significantly less coextraction of albumin. The MIL-DNA method was employed for the extraction of plasmid DNA from bacterial cell lysate. DNA of sufficient quality and quantity for polymerase chain reaction (PCR) amplification was recovered from the MIL extraction phase, demonstrating the feasibility of MIL-based DNA sample preparation prior to downstream analysis.


Subject(s)
DNA/isolation & purification , Ionic Liquids/chemistry , Magnets/chemistry , DNA/analysis , Escherichia coli/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Phenomena , Plasmids/analysis , Plasmids/isolation & purification , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...