Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(11): e10748, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034335

ABSTRACT

The more frequent and intense occurrence of heat waves is a challenge for arthropods because their unpredictable incidence requires fast adaptations by the exposed individuals. Phenotypic plasticity within and across generations might be a solution to cope with the detrimental effects of heat waves, especially for fast-developing, small arthropods with limited dispersal abilities. Therefore, we studied whether severe heat may affect the reproduction of a pest species, the spider mite Tetranychus urticae, and its counterpart, the predatory mite Phytoseiulus persimilis. Single offspring females with different parental thermal origins (reared under mild or extreme heat waves) of both species were exposed to mild or extreme heat waves on bean leaves over 10 days, and the oviposition, egg sizes, survival, and escape behavior of the females were evaluated daily. The total losses of predators mainly via escapers were very high compared to prey, which makes a separation between selective and plastic effects on shifted reproductive traits impossible. Predator females laid smaller eggs, while their consumption and oviposition rates were unaffected during extreme heat waves. In comparison, larger prey females fed more and produced more, but smaller, eggs due to within- and trans-generational effects. These advantages for the prey in comparison to its predator when exposed to extreme heat waves during the reproductive phase support the trophic sensitivity hypothesis: higher trophic levels (i.e., the predator) are more sensitive to thermal stress than lower trophic levels (i.e., the prey). Furthermore, the species-specific responses may reflect their lifestyles. The proactive and mobile predator should be selected for behavioral thermoregulation under heat waves via spatiotemporal avoidance of heat-exposed locations rather than relying on physiological adaptations in contrast to the more sessile prey. Whether these findings also influence predator-prey interactions and their population dynamics under heat waves remains an open question.

2.
Curr Biol ; 33(19): 4150-4159.e5, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37741280

ABSTRACT

Associative learning, such as classical or operant conditioning, has never been unequivocally associated with animals outside bilatarians, e.g., vertebrates, arthropods, or mollusks. Learning modulates behavior and is imperative for survival in the vast majority of animals. Obstacle avoidance is one of several visually guided behaviors in the box jellyfish, Tripedalia cystophora Conant, 1897 (Cnidaria: Cubozoa), and it is intimately associated with foraging between prop roots in their mangrove habitat. The obstacle avoidance behavior (OAB) is a species-specific defense reaction (SSDR) for T. cystophora, so identifying such SSDR is essential for testing the learning capacity of a given animal. Using the OAB, we show that box jellyfish performed associative learning (operant conditioning). We found that the rhopalial nervous system is the learning center and that T. cystophora combines visual and mechanical stimuli during operant conditioning. Since T. cystophora has a dispersed central nervous system lacking a conventional centralized brain, our work challenges the notion that associative learning requires complex neuronal circuitry. Moreover, since Cnidaria is the sister group to Bilateria, it suggests the intriguing possibility that advanced neuronal processes, like operant conditioning, are a fundamental property of all nervous systems.


Subject(s)
Arthropods , Cubozoa , Animals , Cubozoa/physiology , Central Nervous System , Neurites
3.
Biology (Basel) ; 12(4)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37106755

ABSTRACT

The thermal history of arthropod predators and their prey may affect their reproductive performance during heat waves. Thus, a matching juvenile and adult environment should be beneficial as it enables the individuals to acclimate to extreme conditions. Prey fecundity, however, is also affected by a second stressor, namely predation risk. Here, we assessed the impact of extreme and mild heat waves on the reproductive output of acclimated (juvenile and adult heat wave conditions are matching) and non-acclimated females of the biocontrol agent Phytoseiulus persimilis, a predatory mite, and its herbivorous prey, the two-spotted spider mite Tetranychus urticae, on bean leaves. Their escape and oviposition rates and egg sizes were recorded over 10 days. Additionally, ovipositing prey females were exposed to predator cues and heat waves. Acclimation changed the escape rates and egg sizes of both species, whereas fecundity was only influenced by the adult thermal environment via increased egg numbers under extreme heat waves. Acclimation reduced predator and prey escape rates, which were higher for the predator. Pooled over acclimation, both species deposited more but smaller eggs under extreme heat waves. Acclimation dampened this effect in prey eggs, whereas acclimation resulted in smaller female eggs of the predator. Prey deposited larger male and female eggs. Predator cues reduced prey oviposition, but the effect was small compared to the large increase gained under extreme heat waves. We argue that the success of predators in controlling spider mites during heat waves mainly depends on the fates of escaping predators. A permanent absence of predators may result in the numerical dominance of prey.

4.
Biology (Basel) ; 11(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36009751

ABSTRACT

Theoretically, parents can adjust vital offspring traits to the irregular and rapid occurrence of heat waves via developmental plasticity. However, the direction and strength of such trait modifications are often species-specific. Here, we investigated within-generational plasticity (WGP) and trans-generational plasticity (TGP) effects induced by heat waves during the offspring development of the predator Phytoseiulus persimilis and its herbivorous prey, the spider mite Tetranychus urticae, to assess plastic developmental modifications. Single offspring individuals with different parental thermal origin (reared under mild or extreme heat waves) of both species were exposed to mild or extreme heat waves until adulthood, and food consumption, age and size at maturity were recorded. The offspring traits were influenced by within-generational plasticity (WGP), trans-generational plasticity (TGP), non-plastic trans-generational effects (TGE) and/or their interactions. When exposed to extreme heat waves, both species speeded up development (exclusively WGP), consumed more (due to the fact of WGP but also to TGP in prey females and to non-plastic TGE in predator males), and predator females got smaller (non-plastic TGE and WGP), whereas prey males and females were equally sized irrespective of their origin, because TGE, WGP and TGP acted in opposite directions. The body sizes of predator males were insensitive to parental and offspring heat wave conditions. Species comparisons indicated stronger reductions in the developmental time and reduced female predator-prey body size ratios in favor of the prey under extreme heat waves. Further investigations are needed to evaluate, whether trait modifications result in lowered suppression success of the predator on its prey under heat waves or not.

5.
Exp Appl Acarol ; 86(3): 327-342, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35286552

ABSTRACT

The intrinsic rate of natural increase of a population (rm) has been in focus as a key parameter in entomology and acarology. It is considered especially important in studies of predators that are potential biological control agents of fast-growing pests such as mites, whiteflies and thrips. Life-table experiments under controlled laboratory conditions are standard procedures to estimate rm. However, such experiments are often time consuming and may critically depend on the precise assessment of the developmental time and the fecundity rate early in the reproductive phase. Using selected studies of predatory mites with suitable life-table data, we investigated whether and how measurements of growth rates can be simplified. We propose a new method for estimating rm from partial life tables, in which the researcher can choose a level of precision based on a stand-in measure of relative error. Based on this choice, the procedure helps the researcher to decide when a life-table experiment can be terminated. Depending on the chosen precision, significant amounts of experimental time can be saved without seriously compromising the reliability of the estimated growth parameter.


Subject(s)
Arthropods , Mites , Animals , Life Tables , Pest Control, Biological/methods , Predatory Behavior , Reproducibility of Results
6.
Pest Manag Sci ; 78(3): 1099-1108, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34786827

ABSTRACT

BACKGROUND: Climate warming is considered to affect the characteristics of heat waves by increasing their duration, frequency and intensity, which can have dramatic consequences for ectothermic arthropods. However, arthropods may respond to heat waves via plastic modifications, which could differently affect a predator and its prey. We examined this assumption using prominent counterparts in biological control, the predatory mite Phytoseiulus persimilis and its prey, the spider mite Tetranychus urticae. Individuals of both species were separately exposed to mild and extreme heat waves during their juvenile development. RESULTS: Both species developed faster during extreme heat waves, but the proportional increase of the developmental rates was higher in the prey. Independent of sex, P. persimilis reached smaller size at maturity under extreme heat waves, whereas the body size modifications were sex-dependent in T. urticae: males became smaller, but females were able to maintain their size. CONCLUSIONS: An accelerated development may result in the reduction of the exposure time of susceptible juvenile stages to heat waves and prey stages to predators. Plastic size adjustments caused a shift in the female predator-prey body size ratio in favor of the prey, which may lead to higher heat resistance and reduced predation risk for prey females under extreme heat waves. In conclusion, our findings indicate that species-specific shifts in age and size at maturity may result in lower suppression efficacy of the predator P. persimilis against its prey T. urticae with severe consequences for biological control of spider mites, if global warming continues.


Subject(s)
Mites , Tetranychidae , Animals , Female , Global Warming , Hot Temperature , Male , Pest Control, Biological , Predatory Behavior , Species Specificity
7.
Environ Entomol ; 49(2): 342-354, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32078684

ABSTRACT

A simulation model was used to predict how temperature influences biological control of stable flies (Stomoxys calcitrans (L.)) by the pupal parasitoid Spalangia cameroni. Temperature, which was either constant or fluctuated due to seasonal variation and/or environmental stochasticity, was modeled as a first order autocorrelation process. The simulations showed that stable flies could tolerate a wider temperature interval than expected from their thermal performance curve (TPC). This was attributed to the fact that immature flies develop in manure, which protects them against low air temperatures. In contrast, the parasitoids were found to have a narrower thermal tolerance range than expected from their TPC. This was attributed to the temperature-dependent functional response of S. cameroni, which was a limiting factor for the parasitoid's development and survival when host densities were low at suboptimal temperatures. The effects of seasonal variation on critical thermal limits were studied by means of thermal performance diagrams (TPDs). Fluctuating temperatures narrowed the thermal tolerance range of both species. At constant temperatures, the simulations showed that the optimal temperature for using S. cameroni in control of stable flies is ~20°C and that the parasitoid can persist in environments with yearly average temperatures between 18 and 29°C. However, if temperature variation was taken into consideration, it changed both the optimal temperature and the temperature interval at which biological control will be possible. This indicates that climate change causing increasing temperatures compounded with greater fluctuations may have serious consequences for biological control of pests.


Subject(s)
Hymenoptera , Muscidae , Wasps , Animals , Climate Change , Host-Parasite Interactions , Pupa , Temperature
8.
Pain ; 159(6): 1012-1024, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29470312

ABSTRACT

Human studies have demonstrated a correlation between noncoding polymorphisms of "the pain protective" haplotype in the GCH1 gene that encodes for GTP cyclohydrolase I (GTPCH1)-which leads to reduced tetrahydrobiopterin (BH4) production in cell systems-and a diminished perception of experimental and clinical pain. Here, we investigate whether heterozygous mutations in the GCH1 gene which lead to a profound BH4 reduction in patients with dopa-responsive dystonia (DRD) have any effect on pain sensitivity. The study includes an investigation of GCH1-associated biomarkers and pain sensitivity in a cohort of 22 patients with DRD and 36 controls. The patients with DRD had, when compared with controls, significantly reduced levels of BH4, neopterin, biopterin, and GTPCH1 in their urine, blood, or cytokine-stimulated fibroblasts, but their pain response with respect to non-painful stimulation, (acute) stimulus-evoked pain, or pain response after capsaicin-induced sensitization was not significantly different. A family-specific cohort of 11 patients with DRD and 11 controls were included in this study. The patients with DRD were heterozygous for the pain protective haplotype in cis with the GCH1 disease-causing mutation, c.899T>C. No effect on pain perception was observed for this combined haplotype. In conclusion, a reduced concentration of BH4 is not sufficient to alter ongoing pain sensitivity or evoked pain responses.


Subject(s)
Biopterins/analogs & derivatives , Dystonic Disorders/complications , Dystonic Disorders/genetics , GTP Cyclohydrolase/genetics , Mutation/genetics , Pain/etiology , Adult , Age Factors , Aged , Aged, 80 and over , Animals , Biopterins/biosynthesis , Biopterins/metabolism , Capsaicin/pharmacology , Cells, Cultured , Cohort Studies , Cytokines/metabolism , Cytokines/pharmacology , Female , Fibroblasts/drug effects , GTP Cyclohydrolase/metabolism , Genotype , Humans , Male , Middle Aged , Neoptera/metabolism , Pain/genetics , Pain Threshold/physiology , Sex Factors , Young Adult
9.
Environ Entomol ; 46(5): 1130-1142, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28981634

ABSTRACT

Stable flies (Stomoxys calcitrans (L.)) can be a serious pest associated with cattle facilities. In Denmark, they occur most abundantly at organic farms, where they cannot be controlled by means of insecticides. On traditional farms, where chemical control is widely used, development of resistance is of increasing concern. Therefore, interest in biological control or other alternative methods has been growing during the recent years. In order to understand the complex relationships between a pest and its natural enemies in a variable environment, it is necessary to know how temperature affects the dynamics of the involved species. In this paper, we apply data derived from several existing sources to investigate the influence of temperature on development and survival of eggs, larvae, pupae, and adult stable flies, as well as on the fecundity of adult females. We demonstrate that the same modeling framework (called SANDY), previously applied to lifetable data of the pteromalid pupal parasitoid (Spalangia cameroni Perkins), a biological control agent used against stable flies, can also be used to model S. calcitrans. However, the predicted temperature responses depend on the data sources used to parameterize the model, which is reflected by differences in estimated population growth rates obtained from American and non-American studies. Elasticity analysis shows that growth rates are more sensitive to changes in viability, in particular of adult flies, than in fecundity, which may have implications for the management of stable fly populations.


Subject(s)
Models, Biological , Muscidae/growth & development , Oviposition , Animals , Female , Larva/growth & development , Male , Ovum/growth & development , Pupa/growth & development , Temperature
10.
Exp Appl Acarol ; 72(1): 1-14, 2017 May.
Article in English | MEDLINE | ID: mdl-28526953

ABSTRACT

The Banks grass mite, Oligonychus pratensis (Banks) (Acari: Tetranychidae) causes significant damage to dates in California (USA), if not controlled. Studies are underway to develop biological control strategies against this pest in dates using the predatory mite Galendromus flumenis (Chant) (Acari: Phytoseiidae). In California date gardens, this predator is found in low numbers that are insufficient for the economic suppression of Banks grass mites, and our research aims to understand why it fails to keep up with prey densities. The hypothesis that prey density and predator interference interactively determine the predation efficiency of G. flumenis was tested. In addition, the effect of arena size and prey and predator density manipulations on the emigration rate of the predator was investigated. Our results indicate that the per capita predation rate of G. flumenis decreases steeply with increasing predator density due to mutual interference. Analysis of emigration data considering the arena size and predator numbers showed that the emigration rate of G. flumenis was higher from small arenas, and increased with increasing predator numbers. When emigration data were analyzed using prey and predator densities as independent variables, only the effect of predator density was significant, suggesting that higher predator density increases the emigration rate of G. flumenis. These results contribute to our understanding of the predator-prey interactions, and help in designing strategies for more efficient augmentative releases of G. flumenis.


Subject(s)
Animal Migration/physiology , Mites/physiology , Tetranychidae/growth & development , Animals , California , Female , Food Chain , Ovum , Pest Control, Biological , Predatory Behavior
11.
PLoS One ; 11(11): e0165408, 2016.
Article in English | MEDLINE | ID: mdl-27861504

ABSTRACT

Giant African snail (Achatina fulica (Bowdich, 1822)), an important invasive snail, was recently found in South Florida, USA. An extensive eradication effort was initiated consisting of pesticide applications, debris removal and hand collections. We studied the reproduction capacity and population dynamics of snails collected from 22 populations for two years to help evaluate the likely success of the eradication program. A total of 23,890 snails, ranging from 25-131 mm, were measured, dissected and the number of eggs in each snail counted. Gravid snails ranged from 48-128 mm. Only 5% of snails had eggs, which were found year round. As the snails increased in size, they were more likely to include reproducing individuals. However, the percentage of gravid snails peaked when snails were approximately 90 mm. Although more prevalent, small (<65 mm) adults contributed fewer eggs to the population than the larger snails. We evaluated the effect of control measures on six populations having >1000 adult snails and used data from the two largest populations to investigate how environmental factors (temperature, humidity, and rainfall) interacted with population dynamics and control measures. More snails were collected in weeks with high humidity and more gravid snails were collected when the temperature was higher. The addition of metaldehyde pesticides had the greatest impact on population dynamics by reducing snail numbers. In populations with fewer snails, their numbers were already declining before the use of metaldehyde, although the new treatment accelerated the process. As a consequence of the eradication program, egg-producing snails were no longer collected from most populations by the end of the study. The aggressive and persistent control efforts apparently lead to reduced populations of egg producing snails, eventually resulting in local extinctions of this important pest.


Subject(s)
Ecology , Reproduction , Snails , Animals , Body Size , Environment , Florida , Population Dynamics
12.
Environ Entomol ; 45(4): 1063-75, 2016 08.
Article in English | MEDLINE | ID: mdl-27298392

ABSTRACT

The combined effect of temperature and age on development, survival, attack rate, and oviposition of the parasitoid Spalangia cameroni (Perkins) (Hymenoptera: Pteromalidae) exploiting house fly pupae was investigated by conducting life-table experiments at 15, 20, 25, 30 and 35°C. Temperature had a pronounced effect on survival and development of the immature stages. Survival was highest at 25°C, where 88.5% of the parasitized host pupae resulted in adult parasitoids, and lowest at 35°C when only 3.78% emerged. Females constituted between 50% (at 20°C) and 100% (at 35°C) of the surviving immatures. Males developed faster than females, with the shortest developmental times at 30°C (18.18 d for males and 19.41 d for females). Longevity of adult females decreased with temperature from 80 d at 15°C to 18 d at 35°C. Total attack rate of female parasitoids was highest at 20°C (106 hosts per female), and life-time reproduction highest at 20°C and 25°C (about 60 offspring per female). Sex ratio was female biased (65% females). A generic model was used to estimate and predict the temperature effect on the intrinsic rate of increase (rm), the net reproduction rate (R0), and the generation time (G). The model predicted that rm peaks at 33.5°C (rm = 0.182 d(-1)), that maximum R0 is reached at 27.2°C (R0 = 50.2), and that the shortest generation time occurs at 34.5°C (G = 21.1 d). Doubling time was 4.19 d at 33°C. In the temperature range between 20°C and 30°C, S. cameroni has the potential to be an efficient control agent against nuisance flies.


Subject(s)
Houseflies/parasitology , Oviposition , Temperature , Wasps/physiology , Age Factors , Animals , Female , Larva/growth & development , Larva/parasitology , Larva/physiology , Male , Pupa/growth & development , Pupa/parasitology , Pupa/physiology , Sex Ratio , Wasps/growth & development
13.
Exp Appl Acarol ; 67(3): 423-40, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272161

ABSTRACT

The population fluctuations of spider mites on different soybean cultivars were studied in two experiments performed in the municipalities of São Sepé (experiment 1) and Santa Maria (experiment 2) in the state of Rio Grande do Sul, Brazil. The number of cultivars was 20 in São Sepé and 25 in Santa Maria, and at each location leaves were sampled from 15 plants per cultivar every week throughout the entire plant developmental cycle, amounting to 11 and 10 samplings in experiment 1 and 2, respectively. The statistical analysis revealed that mite densities varied significantly with cultivar and time. Besides, the interaction between soybean cultivars and sampling times was significant at both locations. This indicates that the populations did not vary in the same way among cultivars over time, which is attributed to differences among the cultivars with respect to their phenology and response to spider mites. Equations for describing the mite population dynamics were estimated for each cultivar, mostly by fitting cubic equations to the weekly growth rates (per capita changes) in mite densities. We also found that the highest growth rates for mites on soybean cultivars in both locations occurred after the beginning of flowering, when the plants shifted from the vegetative to reproductive stages, about 3 weeks before reaching the peak densities.


Subject(s)
Food Chain , Glycine max/growth & development , Tetranychidae/physiology , Animals , Brazil , Population Density , Population Dynamics , Tetranychidae/growth & development
14.
Exp Appl Acarol ; 66(4): 453-79, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014647

ABSTRACT

The objective of this study was to investigate whether four spider mite species, Tetranychus ludeni, T. phaselus, T. piercei and T. truncatus, currently with insignificant economic impact, have the potential to achieve the same status as T. urticae, which until now has been considered as the most serious tetranychid pest species in orchards and greenhouses. We investigated the effect of temperature on development, survival and oviposition at 11 constant temperatures ranging from 15 to 40 °C at intervals of 2.5 °C and estimated demographic parameters, such as the intrinsic rate of natural increase (rm), for these five species at five constant temperatures. Developmental time from egg to adult (female and male) decreased with increasing temperature from 15 to 32.5 °C in all five species, but increased slightly at 35 °C or higher, especially in T. ludeni and T. urticae. Using linear and non-linear developmental rate models, the lower thermal thresholds for egg-to-adult (female and male) and egg-to-egg development were found to range from 9.8 to 11.7 and from 9.8 to 11.4 °C, respectively. The intrinsic optimal temperature (TΦ) ranged from 18.0 to 27.4 °C for egg-to-female adult and from 23.9 to 27.2 °C for egg-to-egg development. The oviposition period and adult longevity were strongly affected by temperature. The rm-values increased with increasing temperature from 15 to 30 or 35 °C in all five species. The highest rm-values at each temperature were 0.114 day(-1) at 15 °C for T. ludeni, 0.199 day(-1) at 20 °C for T. urticae, 0.314 day(-1) at 25 °C for T. ludeni, 0.451 day(-1) at 30 °C for T. ludeni and 0.433 day(-1) at 35 °C for T. truncatus. The total fecundity, net reproductive rate (R0) and rm of T. ludeni were higher than those of T. urticae at all temperatures. T. piercei and T. truncatus showed higher rm-values at 30 and 35 °C than T. urticae. The results indicate that the former three species are better adapted to hot weather than T. urticae and have a high potential to become serious pests.


Subject(s)
Longevity , Oviposition , Tetranychidae/physiology , Animals , Female , Fertility , Japan , Larva/growth & development , Male , Nymph/growth & development , Ovum/growth & development , Population Dynamics , Reproduction , Species Specificity , Temperature , Tetranychidae/growth & development
15.
Exp Appl Acarol ; 64(4): 465-78, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25047962

ABSTRACT

We focused on the influence of different temperature amplitudes on development and reproduction of the two-spotted spider mite, Tetranychus urticae Koch, at a 16:8 (L:D) h photoperiod and 60-95 % RH. The temperature amplitudes varied from 0 to 24 °C in steps of 6 °C; i.e. 22 ± 0, 22 ± 3, 22 ± 6, 22 ± 9 and 22 ± 12 °C. Temperature changed every 24 h between a low and an upper value, but without changing the average temperature (22 °C). The number of eggs laid by five females for 24 h was slightly lower at 22 ± 12 °C than at constant temperature (22 ± 0 °C), and egg hatchability differed among the five temperature regimes. Developmental time at 22 ± 0 °C was shorter than that at 22 ± 3 and 22 ± 6 °C, but longer than that at 22 ± 9 and 22 ± 12 °C. The oviposition period, total fecundity per female and adult longevity gradually decreased with increasing amplitudes. Sex ratio was similar at all five temperature regimes. The intrinsic rate of natural increase (r m) was affected by temperature amplitude and the r m-values at all amplitudes except 22 ± 12 °C were higher than that at constant temperature. Thus, this study showed that variable temperature regimes influence population growth rates of T. urticae and that large amplitude regimes are stressful for this species.


Subject(s)
Tetranychidae/physiology , Animals , Cohort Studies , Female , Linear Models , Male , Oviposition/physiology , Reproduction/physiology , Temperature , Tetranychidae/growth & development
16.
Article in English | MEDLINE | ID: mdl-23893247

ABSTRACT

The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.


Subject(s)
Biological Clocks/drug effects , Cubozoa/drug effects , Neurotransmitter Agents/pharmacology , Swimming , Action Potentials , Animals , Cubozoa/physiology , Signal Transduction/drug effects , Time Factors
17.
Exp Appl Acarol ; 56(4): 327-44, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22382712

ABSTRACT

Development and reproductive traits of Tetranychus macfarlanei Baker & Pritchard (Acari: Tetranychidae) were investigated on kidney bean, Phaseolus vulgaris L., at eleven constant temperatures. Tetranychus macfarlanei was able to develop and complete its life cycle at temperatures ranging from 17.5 to 37.5°C. At 15 and 40°C, a few eggs (2-4%) hatched but further development was arrested. Development from egg to adult was slowest at 17.5°C and fastest at 35°C for both females and males. Using Ikemoto and Takai's linear model, the estimated lower developmental thresholds for egg-to-female adult, egg-to-male adult and egg-to-egg development were 12.9-13.0°C. The thermal constants for the respective stages were 110.85, 115.99 and 125.32 degree-days (DD). The intrinsic optimum temperatures (T (Φ)) calculated by non-linear SSI model were determined as 24.4, 24.4 and 24.2°C for egg-to-female adult, egg-to-male adult and egg-to-egg development, respectively. The net reproductive rate (R (0)) was highest at 25°C (167.4 females per female) and lowest at 17.5°C (42.6 females per female). The intrinsic rate of natural increase, r (m), increased linearly with the rising of temperature from 0.102 at 17.5°C to 0.441 day(-1) at 35°C. These values suggested that T. macfarlanei could be growing quickly in response to increasing temperatures from 17.5 to 35°C and provide a basis for predicting its potential geographical range.


Subject(s)
Tetranychidae/physiology , Animals , Bangladesh , Female , Life Cycle Stages/physiology , Linear Models , Male , Reproduction/physiology , Temperature , Tetranychidae/growth & development
18.
Environ Toxicol Chem ; 29(10): 2371-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20872702

ABSTRACT

This study presents the effects of sublethal concentrations of pesticides cypermethrin and azoxystrobin on the activity of several physiological parameters of egg-carrying Daphnia magna studied using a video-image technique. Single tethered daphnids were continuously recorded for 24 h of pesticide exposure, and the activity of the heart, the filtering limbs, the mandibles, and the focal spine were subsequently analyzed. Acute toxicity tests based on the criteria of immobilization were performed on egg-carrying D. magna, and sublethal concentrations of 0.1, 1.0, and 10 µg/L cypermethrin and 0.5, 1.0, and 2.0 mg/L azoxystrobin were established. At a concentration as low as 0.1 µg/L cypermethrin, the 5% effective concentration after 24 h of exposure (EC5,24h), the activity of the focal spine increased and the filtering limb activity decreased. The activity of the mandibles was reduced by exposure to 1.0 (EC18,24 h) and 10 µg/L (EC41,24 h) cypermethrin, whereas heart activity increased at a concentration of 10 µg/L (EC41,24 h). With regard to azoxystrobin, the activity of all response parameters except the focal spine decreased by exposure to 0.5 mg/L (EC4,24h) azoxystrobin. The focal spine was not affected by azoxystrobin. The results show that physiological mechanisms important for ingestion of food in D. magna may be impaired by low concentrations of commonly used pesticides.


Subject(s)
Daphnia/drug effects , Fungicides, Industrial/toxicity , Insecticides/toxicity , Methacrylates/toxicity , Pyrethrins/toxicity , Pyrimidines/toxicity , Animals , Dose-Response Relationship, Drug , Strobilurins
19.
J Anim Ecol ; 75(4): 948-58, 2006 Jul.
Article in English | MEDLINE | ID: mdl-17009758

ABSTRACT

1. Functional response models (e.g. Holling's disc equation) that do not take the spatial distributions of prey and predators into account are likely to produce biased estimates of predation rates. 2. To investigate the consequences of ignoring prey distribution and predator aggregation, a general analytical model of a predator population occupying a patchy environment with a single species of prey is developed. 3. The model includes the density and the spatial distribution of the prey population, the aggregative response of the predators and their mutual interference. 4. The model provides explicit solutions to a number of scenarios that can be independently combined: the prey has an even, random or clumped distribution, and the predators show a convex, sigmoid, linear or no aggregative response. 5. The model is parameterized with data from an acarine predator-prey system consisting of Phytoseiulus persimis and Tetranychus urticae inhabiting greenhouse cucumbers. 6. The model fits empirical data quite well and much better than if prey and predators were assumed to be evenly distributed among patches, or if the predators were distributed independently of the prey. 7. The analyses show that if the predators do not show an aggregative response it will always be an advantage to the prey to adopt a patchy distribution. On the other hand, if the predators are capable of responding to the distribution of prey, then it will be an advantage to the prey to be evenly distributed when its density is low and switch to a more patchy distribution when its density increases. The effect of mutual interference is negligible unless predator density is very high. 8. The model shows that prey patchiness and predator aggregation in combination can change the functional response at the population level from type II to type III, indicating that these factors may contribute to stabilization of predator-prey dynamics.


Subject(s)
Ecosystem , Models, Biological , Predatory Behavior/physiology , Animals , Mites/physiology
20.
Exp Appl Acarol ; 38(2-3): 87-111, 2006.
Article in English | MEDLINE | ID: mdl-16596345

ABSTRACT

The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.


Subject(s)
Cucumis sativus/parasitology , Models, Biological , Tetranychidae/physiology , Animals , Feeding Behavior , Plant Leaves/parasitology , Predatory Behavior , Tetranychidae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...