Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 52(2): 458-64, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17999967

ABSTRACT

beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) RNA replication in an HCV replicon assay. The 5'-triphosphate of PSI-6130 is a competitive inhibitor of the HCV RNA-dependent RNA polymerase (RdRp) and acts as a nonobligate chain terminator. Recently, it has been shown that the metabolism of PSI-6130 also results in the formation of the 5'-triphosphate of the uridine congener, beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine (PSI-6206; RO2433). Here we show that the formation of the 5'-triphosphate of RO2433 (RO2433-TP) requires the deamination of PSI-6130 monophosphate and that RO2433 monophosphate is subsequently phosphorylated to the corresponding di- and triphosphates by cellular UMP-CMP kinase and nucleoside diphosphate kinase, respectively. RO2433-TP is a potent inhibitor of the HCV RdRp; however, both enzymatic and cell-based assays show that PSI-6130 triphosphate is a more potent inhibitor of the HCV RdRp than RO2433-TP.


Subject(s)
Deoxycytidine/analogs & derivatives , Hepacivirus/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Uridine Triphosphate/metabolism , Uridine Triphosphate/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Line , Cytidine/analogs & derivatives , Cytidine/pharmacology , Deoxycytidine/chemistry , Deoxycytidine/metabolism , Deoxycytidine/pharmacology , Hepacivirus/enzymology , Humans , Microbial Sensitivity Tests , Phosphorylation , Replicon/drug effects , Structure-Activity Relationship , Uridine Triphosphate/analogs & derivatives , Uridine Triphosphate/chemistry
2.
Antivir Chem Chemother ; 17(2): 79-87, 2006.
Article in English | MEDLINE | ID: mdl-17042329

ABSTRACT

beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a cytidine analogue with potent and selective anti-hepatitis C virus (HCV) activity in the subgenomic HCV replicon assay, 90% effective concentration (EC90)=4.6 +/- 2.0 microM. The spectrum of activity and cytotoxicity profile of PSI-6130 was evaluated against a diverse panel of viruses and cell types, and against two additional HCV-1b replicons. The S282T mutation, which confers resistance to 2'-C-methyl adenosine and other 2'-methylated nucleosides, showed only a 6.5-fold increase in EC90. When assayed for activity against bovine diarrhoea virus (BVDV), which is typically used as a surrogate assay to identify compounds active against HCV, PSI-6130 showed no anti-BVDV activity. Weak antiviral activity was noted against other flaviviruses, including West Nile virus, Dengue type 2, and yellow fever virus. These results indicate that PSI-6130 is a specific inhibitor of HCV. PSI-6130 showed little or no cytotoxicity against various cell types, including human peripheral blood mononuclear and human bone marrow progenitor cells. No mitochondrial toxicity was observed with PSI-6130. The reduced activity against the RdRp S282T mutant suggests that PSI-6130 is an inhibitor of replicon RNA synthesis. Finally, the no-effect dose for mice treated intraperitoneally with PSI-6130 for six consecutive days was > or =100 mg/kg per day.


Subject(s)
Antiviral Agents/pharmacology , Deoxycytidine/analogs & derivatives , Hepacivirus/genetics , RNA, Viral/antagonists & inhibitors , Replicon/genetics , Virus Replication/drug effects , Animals , Antiviral Agents/toxicity , Cell Line , Deoxycytidine/pharmacology , Deoxycytidine/toxicity , Hepacivirus/physiology , Humans , Mice , RNA, Viral/biosynthesis
4.
Eur J Immunol ; 35(4): 1267-74, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15739164

ABSTRACT

Several GATA-binding sites have been identified in regions both distal to and within the murine IL-4 gene locus, yet their relative role in IL-4 expression is unknown. Chromatin immunoprecipitation assays were used to demonstrate that GATA-1 and GATA-2 are associated with a regulatory element within the second intron of the IL-4 gene in murine mast cells in vivo. Furthermore, although expression from a stably integrated wild-type IL-4 minigene parallels endogenous IL-4 gene expression, mutation of the GATA-binding element, but not an SP-1-binding site, virtually abolishes transcription in mast cells, an observation that correlates with the local loss of H3 and H4 histone acetylation in the intron. Treatment with the chromatin remodeling agents 5 azacytidine and trichostatin A can restore this defect in transcription. These results define an essential site of GATA influence on IL-4 expression in mast cells and directly support the idea that GATA factors have a profound impact on locus accessibility.


Subject(s)
Chromatin Assembly and Disassembly/physiology , DNA/metabolism , Interleukin-4/genetics , Introns/physiology , Mast Cells/metabolism , Transcription Factors/metabolism , Binding Sites/genetics , Gene Expression Regulation/physiology , Histones/metabolism , Interleukin-4/biosynthesis , Introns/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...