Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Struct Biol ; 78: 102525, 2023 02.
Article in English | MEDLINE | ID: mdl-36621152

ABSTRACT

Robust technology has been developed to systematically quantify fitness landscapes that provide valuable opportunities to improve our understanding of drug resistance and define new avenues to develop drugs with reduced resistance susceptibility. We outline the critical importance of drug resistance studies and the potential for fitness landscape approaches to contribute to this effort. We describe the major technical advancements in mutational scanning, which is the primary approach used to quantify protein fitness landscapes. There are many complex steps to consider in planning and executing mutational scanning projects including developing a selection scheme, generating mutant libraries, tracking the frequency of variants using next-generation sequencing, and processing and interpreting the data. Key experimental parameters impacting each of these steps are discussed to aid in planning fitness landscape studies. There is a strong need for improved understanding of drug resistance, and fitness landscapes provide a promising new approach.


Subject(s)
Genetic Fitness , Models, Genetic , Mutation , Proteins , Drug Resistance
2.
Elife ; 112022 06 20.
Article in English | MEDLINE | ID: mdl-35723575

ABSTRACT

With the continual evolution of new strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that are more virulent, transmissible, and able to evade current vaccines, there is an urgent need for effective anti-viral drugs. The SARS-CoV-2 main protease (Mpro) is a leading target for drug design due to its conserved and indispensable role in the viral life cycle. Drugs targeting Mpro appear promising but will elicit selection pressure for resistance. To understand resistance potential in Mpro, we performed a comprehensive mutational scan of the protease that analyzed the function of all possible single amino acid changes. We developed three separate high throughput assays of Mpro function in yeast, based on either the ability of Mpro variants to cleave at a defined cut-site or on the toxicity of their expression to yeast. We used deep sequencing to quantify the functional effects of each variant in each screen. The protein fitness landscapes from all three screens were strongly correlated, indicating that they captured the biophysical properties critical to Mpro function. The fitness landscapes revealed a non-active site location on the surface that is extremely sensitive to mutation, making it a favorable location to target with inhibitors. In addition, we found a network of critical amino acids that physically bridge the two active sites of the Mpro dimer. The clinical variants of Mpro were predominantly functional in our screens, indicating that Mpro is under strong selection pressure in the human population. Our results provide predictions of mutations that will be readily accessible to Mpro evolution and that are likely to contribute to drug resistance. This complete mutational guide of Mpro can be used in the design of inhibitors with reduced potential of evolving viral resistance.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cysteine Endopeptidases/metabolism , Humans , Protease Inhibitors , SARS-CoV-2/genetics , Saccharomyces cerevisiae/metabolism , Viral Nonstructural Proteins/metabolism
3.
Protein Sci ; 31(7): e4366, 2022 07.
Article in English | MEDLINE | ID: mdl-35762719

ABSTRACT

The infectivity of HIV-1 requires its protease (PR) cleave multiple cut-sites with low sequence similarity. The diversity of cleavage sites has made it challenging to investigate the underlying sequence properties that determine binding and turnover of substrates by PR. We engineered a mutational scanning approach utilizing yeast display, flow cytometry, and deep sequencing to systematically measure the impacts of all individual amino acid changes at 12 positions in three different cut-sites (MA/CA, NC/p1, and p1/p6). The resulting fitness landscapes revealed common physical features that underlie cutting of all three cut-sites at the amino acid positions closest to the scissile bond. In contrast, positions more than two amino acids away from the scissile bond exhibited a strong dependence on the sequence background of the rest of the cut-site. We observed multiple amino acid changes in cut-sites that led to faster cleavage rates, including a preference for negative charge five and six amino acids away from the scissile bond at locations where the surface of protease is positively charged. Analysis of individual cut sites using full-length matrix-capsid proteins indicate that long-distance sequence context can contribute to cutting efficiency such that analyses of peptides or shorter engineered constructs including those in this work should be considered carefully. This work provides a framework for understanding how diverse substrates interact with HIV-1 PR and can be extended to investigate other viral PRs with similar properties.


Subject(s)
HIV Protease , HIV-1 , Amino Acids/metabolism , Endopeptidases , HIV Protease/metabolism , HIV-1/genetics , Peptides
4.
Virus Evol ; 7(2): veab103, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35299788

ABSTRACT

Investigating the relationships between protein function and fitness provides keys for understanding biochemical mechanisms that underly evolution. Mutations with partial fitness defects can delineate the threshold of biochemical function required for viability. We utilized a previous deep mutational scan of HIV-1 protease (PR) to identify variants with 15-45 per cent defects in replication and analysed the biochemical function of eight variants (L10M, L10S, V32C, V32I, A71V, A71S, Q92I, Q92N). We purified each variant and assessed the efficiency of peptide cleavage for three cut sites (MA-CA, TF-PR, and PR-RT) as well as gel-based analyses of processing of purified Gag. The cutting activity of at least one site was perturbed relative to WT protease for all variants, consistent with cutting activity being a primary determinant of fitness effects. We examined the correlation of fitness defects with cutting activity of different sites. MA-CA showed the weakest correlation (R 2 = 0.02) with fitness, suggesting relatively weak coupling with viral replication. In contrast, cutting of the TF-PR site showed the strongest correlation with fitness (R 2 = 0.53). Cutting at the TF-PR site creates a new PR protein with a free N-terminus that is critical for activity. Our findings indicate that increasing the pool of active PR is rate limiting for viral replication, making this an ideal step to target with inhibitors.

5.
Biochemistry ; 58(35): 3711-3726, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31386353

ABSTRACT

Protease inhibitors have the highest potency among antiviral therapies against HIV-1 infections, yet the virus can evolve resistance. Darunavir (DRV), currently the most potent Food and Drug Administration-approved protease inhibitor, retains potency against single-site mutations. However, complex combinations of mutations can confer resistance to DRV. While the interdependence between mutations within HIV-1 protease is key for inhibitor potency, the molecular mechanisms that underlie this control remain largely unknown. In this study, we investigated the interdependence between the L89V and L90M mutations and their effects on DRV binding. These two mutations have been reported to be positively correlated with one another in HIV-1 patient-derived protease isolates, with the presence of one mutation making the probability of the occurrence of the second mutation more likely. The focus of our investigation is a patient-derived isolate, with 24 mutations that we call "KY"; this variant includes the L89V and L90M mutations. Three additional KY variants with back-mutations, KY(V89L), KY(M90L), and the KY(V89L/M90L) double mutation, were used to experimentally assess the individual and combined effects of these mutations on DRV inhibition and substrate processing. The enzymatic assays revealed that the KY(V89L) variant, with methionine at residue 90, is highly resistant, but its catalytic function is compromised. When a leucine to valine mutation at residue 89 is present simultaneously with the L90M mutation, a rescue of catalytic efficiency is observed. Molecular dynamics simulations of these DRV-bound protease variants reveal how the L90M mutation induces structural changes throughout the enzyme that undermine the binding interactions.


Subject(s)
Amino Acid Substitution/physiology , Drug Resistance, Viral/genetics , Epistasis, Genetic/genetics , HIV Protease/genetics , Amino Acid Substitution/genetics , Catalytic Domain , Crystallography, X-Ray , HIV Infections/drug therapy , HIV Infections/virology , HIV Protease/chemistry , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , HIV-1/enzymology , HIV-1/genetics , Humans , Leucine/genetics , Methionine/genetics , Models, Molecular , Molecular Dynamics Simulation , Mutation, Missense/physiology , Protein Binding , Protein Denaturation , Valine/genetics
6.
ACS Chem Biol ; 14(11): 2441-2452, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31361460

ABSTRACT

Drug resistance continues to be a growing global problem. The efficacy of small molecule inhibitors is threatened by pools of genetic diversity in all systems, including antibacterials, antifungals, cancer therapeutics, and antivirals. Resistant variants often include combinations of active site mutations and distal "secondary" mutations, which are thought to compensate for losses in enzymatic activity. HIV-1 protease is the ideal model system to investigate these combinations and underlying molecular mechanisms of resistance. Darunavir (DRV) binds wild-type (WT) HIV-1 protease with a potency of <5 pM, but we have identified a protease variant that loses potency to DRV 150 000-fold, with 11 mutations in and outside the active site. To elucidate the roles of these mutations in DRV resistance, we used a multidisciplinary approach, combining enzymatic assays, crystallography, and molecular dynamics simulations. Analysis of protease variants with 1, 2, 4, 8, 9, 10, and 11 mutations showed that the primary active site mutations caused ∼50-fold loss in potency (2 mutations), while distal mutations outside the active site further decreased DRV potency from 13 nM (8 mutations) to 0.76 µM (11 mutations). Crystal structures and simulations revealed that distal mutations induce subtle changes that are dynamically propagated through the protease. Our results reveal that changes remote from the active site directly and dramatically impact the potency of the inhibitor. Moreover, we find interdependent effects of mutations in conferring high levels of resistance. These mechanisms of resistance are likely applicable to many other quickly evolving drug targets, and the insights may have implications for the design of more robust inhibitors.


Subject(s)
Darunavir/metabolism , Drug Resistance, Viral/genetics , HIV Protease Inhibitors/metabolism , HIV Protease/genetics , HIV Protease/metabolism , Biocatalysis , Catalytic Domain/genetics , Humans , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation
8.
Mol Biol Evol ; 36(4): 798-810, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30721995

ABSTRACT

The evolution of HIV-1 protein sequences should be governed by a combination of factors including nucleotide mutational probabilities, the genetic code, and fitness. The impact of these factors on protein sequence evolution is interdependent, making it challenging to infer the individual contribution of each factor from phylogenetic analyses alone. We investigated the protein sequence evolution of HIV-1 by determining an experimental fitness landscape of all individual amino acid changes in protease. We compared our experimental results to the frequency of protease variants in a publicly available data set of 32,163 sequenced isolates from drug-naïve individuals. The most common amino acids in sequenced isolates supported robust experimental fitness, indicating that the experimental fitness landscape captured key features of selection acting on protease during viral infections of hosts. Amino acid changes requiring multiple mutations from the likely ancestor were slightly less likely to support robust experimental fitness than single mutations, consistent with the genetic code favoring chemically conservative amino acid changes. Amino acids that were common in sequenced isolates were predominantly accessible by single mutations from the likely protease ancestor. Multiple mutations commonly observed in isolates were accessible by mutational walks with highly fit single mutation intermediates. Our results indicate that the prevalence of multiple-base mutations in HIV-1 protease is strongly influenced by mutational sampling.


Subject(s)
Evolution, Molecular , HIV Protease/genetics , HIV-1/genetics , Point Mutation , Genetic Code , Selection, Genetic
9.
ACS Infect Dis ; 5(2): 316-325, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30543749

ABSTRACT

HIV-1 protease is one of the prime targets of agents used in antiretroviral therapy against HIV. However, under selective pressure of protease inhibitors, primary mutations at the active site weaken inhibitor binding to confer resistance. Darunavir (DRV) is the most potent HIV-1 protease inhibitor in clinic; resistance is limited, as DRV fits well within the substrate envelope. Nevertheless, resistance is observed due to hydrophobic changes at residues including I50, V82, and I84 that line the S1/S1' pocket within the active site. Through enzyme inhibition assays and a series of 12 crystal structures, we interrogated susceptibility of DRV and two potent analogues to primary S1' mutations. The analogues had modifications at the hydrophobic P1' moiety compared to DRV to better occupy the unexploited space in the S1' pocket where the primary mutations were located. Considerable losses of potency were observed against protease variants with I84V and I50V mutations for all three inhibitors. The crystal structures revealed an unexpected conformational change in the flap region of I50V protease bound to the analogue with the largest P1' moiety, indicating interdependency between the S1' subsite and the flap region. Collective analysis of protease-inhibitor interactions in the crystal structures using principle component analysis was able to distinguish inhibitor identity and relative potency solely based on van der Waals contacts. Our results reveal the complexity of the interplay between inhibitor P1' moiety and S1' mutations and validate principle component analyses as a useful tool for distinguishing resistance and inhibitor potency.


Subject(s)
Darunavir/analogs & derivatives , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/genetics , HIV-1/drug effects , HIV-1/genetics , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Darunavir/chemistry , HIV-1/enzymology , Humans , Kinetics , Models, Molecular , Mutation , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...