Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioconjug Chem ; 34(5): 893-910, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37092892

ABSTRACT

Pseudomonas aeruginosa (PA) is a Gram-negative pathogen that the World Health Organization has ranked as a priority 1 (critical) threat. One potential prophylactic approach to preventing or reducing the incidence of PA would be development of a long sought-after vaccine. Both antibody and CD4+ T-cell responses have been noted as playing key roles in protection against infection. In these studies, we have designed a prototype vaccine consisting of several known linear B-cell epitopes derived from an outer membrane porin F (OprF). The resulting thiol-containing protein was conjugated to a version of the lipopeptide-based Toll-like receptor agonist Pam3CysSK4Mal (10) containing a maleimide moiety and formulated into dipalmitoylphosphatidylcholine (DPPC)/cholesterol (Chol) liposomes. Mice immunized with the resulting vaccine generated antibodies that bound PA14 (serotype O10) in vitro and induced opsonization in the presence of rabbit complement and murine macrophage RAW264.7 cells. The liposome was optimized to contain 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG), Chol, Pam3CysSK4-OprF (12) and the Quillaja saponaria-derived saponin adjuvant QS-21. The resulting vaccine formulation produced significantly higher antibody titers, increased the IgG2a antibody isotype, and increased the number of IgG-producing B-cells as well as splenic primed T-cells. In summary, the liposomal vaccine platform was found highly useful for the generation of a robust and balanced TH1/TH2 response.


Subject(s)
Saponins , Vaccines , Mice , Animals , Liposomes , Porins , Epitopes , Adjuvants, Immunologic , Pseudomonas aeruginosa , Immunoglobulin G , Cholesterol
2.
J Scleroderma Relat Disord ; 7(1): 71-81, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35386944

ABSTRACT

Background: The etiology of systemic sclerosis is not clear, but there is evidence suggesting a critical role for epigenetic alterations in disease pathogenesis and clinical expression. We sought, in this study, to characterize the genome-wide DNA methylation signature in systemic sclerosis microvascular endothelial cells. Methods: We performed a genome-wide DNA methylation study in microvascular endothelial cells derived from seven diffuse cutaneous systemic sclerosis patients compared to seven age-, sex-, and ethnicity-matched healthy controls. We paired matched samples on Illumina HumanMethylation450 (three diffuse cutaneous systemic sclerosis microvascular endothelial cells and three controls), and reproduced the results in an independent set of matched patient and controls using Illumina Infinium MethylationEPIC (four diffuse cutaneous systemic sclerosis patients and four controls) to identify differentially methylated genes. Results: We identified 71,353 differentially methylated CpG sites in systemic sclerosis microvascular endothelial cells using Infinium MethylationEPIC microarray in the first group (0.081% of representative probes) and 33,170 CpG sites in the second group using HumanMethylation450 microarray (0.073% of representative probes) in diffuse cutaneous systemic sclerosis microvascular endothelial cells. Among the two groups of subjects, we identified differential methylation of 2455 CpG sites, representing 1301 genes. Most of the differentially methylated CpG sites were hypermethylated (1625 CpG), corresponding to 910 genes. Common hypermethylated genes in systemic sclerosis microvascular endothelial cells include NOS1, DNMT3A, DNMT3B, HDAC4, and ANGPT2. We also identified hypomethylation of IL17RA, CTNNA3, ICAM2, and SDK1 in systemic sclerosis microvascular endothelial cells. Furthermore, we demonstrate significant inverse correlation between DNA methylation status and gene expression in the majority of genes evaluated. Gene ontology analysis of hypermethylated genes demonstrated enrichment of genes involved in angiogenesis (p = 0.0006). Pathway analysis of hypomethylated genes includes genes involved in vascular smooth muscle contraction (p = 0.014) and adherens junctions (p = 0.013). Conclusion: Our data suggest the presence of significant genome-wide DNA methylation aberrancies in systemic sclerosis microvascular endothelial cells, and identify novel affected genes and pathways in systemic sclerosis microvascular endothelial cells.

3.
CNS Neurol Disord Drug Targets ; 15(1): 86-94, 2016.
Article in English | MEDLINE | ID: mdl-26295819

ABSTRACT

Alzheimer's disease (AD) is the leading neurodegenerative disorder affecting the world's elderly population. Most experimental models of AD are transgenic or pharmacological in nature, and do not simulate the entire pathophysiology. In the present study, we developed a pharmacologically induced AD using the zebrafish, a species that can recapitulate most of the phenotypes of the disease. The pharmacological agent being used, okadaic acid (OKA) has also been utilized to study AD in other species. In this model, the immunohistochemistry of phosphorylated glycogen synthase-3α/ß, Aß, p-tau, tau protein, and senile plaque formation in zebrafish brain were all significantly increased with increasing exposure to OKA. These represent the majority of the histological hallmarks of AD pathophysiology. The observed changes were also accompanied by learning and memory deficits which are also important components in AD pathophysiology. Zebrafish disease models are gaining popularity mostly due to their economic cost and relevance to human disease pathophysiology. Current pharmacological methods of inducing AD in zebrafish are not adequately developed and do not represent all the features of the disease. OKA-induced AD in zebrafish can become a cost efficient model to study drug discovery for AD. It may also be used to unravel the molecular mechanisms underlying the complex pathophysiology that leads to AD using relatively economical species.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/pathology , Disease Models, Animal , Maze Learning/drug effects , Okadaic Acid/toxicity , Zebrafish , Alzheimer Disease/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Dose-Response Relationship, Drug , Maze Learning/physiology , Memory/drug effects , Memory/physiology , Zebrafish/metabolism
4.
Obesity (Silver Spring) ; 24(2): 417-23, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26694743

ABSTRACT

OBJECTIVE: Obesity-induced diabetes has increased over the years and has become one of the risk factors for stroke. We investigated the influence of diet-induced obesity and hyperglycemia on permanent distal middle cerebral artery occlusion (pMCAO)-induced ischemic stroke in mice. METHODS: Male C57/Bl6 mice were treated with a high-fat/high-carbohydrate diet [HFCD/obese and hyperglycemia (O/H)] or a normal diet (control) for 3.5 months, subjected to pMCAO, and sacrificed after 7 days. RESULTS: Infarct volume analysis showed no differences between the O/H and control group, whereas neurological deficits were significantly higher in the O/H group compared to the control group. Sirtuin (Sirt1) was overexpressed and NADPH oxidase was reduced in the O/H group. O/H mice had significantly lower expression of Wnt and glycogen synthase kinase 3 α and ß, a key component in the Wnt signaling pathway. Translocation of apoptosis inducing factor (AIF) to the nucleus was observed in both the O/H and control groups, but O/H mice showed a higher expression of AIF in the nucleus. CONCLUSIONS: These data suggest that impaired Wnt signaling and active apoptosis result in reduced post-stroke recovery in obese and hyperglycemic mice.


Subject(s)
Brain Ischemia/metabolism , Hyperglycemia/metabolism , Infarction, Middle Cerebral Artery/metabolism , Obesity/metabolism , Animals , Disease Models, Animal , Glycogen Synthase Kinase 3 , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Signal Transduction
5.
Mol Neurobiol ; 49(2): 945-56, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24154866

ABSTRACT

Stroke is the fourth leading cause of death and a major cause of disability in stroke survivors. Studies have underlined the importance of repair mechanisms in the recovery phase of stroke. Neurogenesis in response to brain injury is one of the regeneration processes that, if enhanced, may offer better stroke treatment alternatives. Previously, we have demonstrated antioxidant, neuritogenic, and angiogenic properties of Ginkgo biloba/EGb 761® (EGb 761) in different mouse models of stroke. In the present study, we were interested to study whether EGb 761 could protect mice from permanent middle cerebral artery occlusion (pMCAO) and enhance neurogenesis. EGb 761 pre- and posttreated mice had lower infarct volume and improved motor skills with enhanced proliferation of neuronal stem/progenitor cells (NSPCs) at 24 h and 7 days posttreatment. Netrin-1 and its receptors (DCC and UNC5B) that mediate axonal attraction and repulsion were observed to be overexpressed in NSPCs only, implying that netrin-1 and its receptors might have partly played a role in enhanced neurogenesis. Interestingly, in heme oxygenase 1 knockout mice (HO1(-/-)), neurogenesis was significantly lower than in vehicle-treated mice at day 8. Furthermore, EGb 761 posttreated mice also demonstrated heme oxygenase 1 (HO1)-activated pathway of phosphorylated glycogen synthase kinase 3 α/ß (p-GSK-3 α/ß), collapsin response mediator protein 2 (CRMP-2), semaphorin3A (SEMA3A), and Wnt, suggesting probable signaling pathways involved in proliferation, differentiation, and migration of NSPCs. Together, these results propose that EGb 761 not only has antioxidant, neuritogenic, and angiogenic properties, but can also augment the repair and regeneration mechanisms following stroke.


Subject(s)
Brain Ischemia/enzymology , Ginkgo biloba , Heme Oxygenase-1/physiology , Membrane Proteins/physiology , Neurogenesis/physiology , Plant Extracts/therapeutic use , Stroke/enzymology , Animals , Brain Ischemia/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/drug effects , Plant Extracts/pharmacology , Stroke/drug therapy
6.
Bioorg Med Chem Lett ; 23(5): 1232-7, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23380377

ABSTRACT

Stroke is a debilitating disease and the third leading cause of death in the USA, where over 2000 new stroke cases are diagnosed every day. Treatment options for stroke-related brain damage are very limited and there is an urgent need for effective neuroprotective agents to treat these conditions. Comparison of the structures of several classes of neuroprotective natural products such as limonoids and cardiac glycosides revealed the presence of a common structural motif which may account for their observed neuroprotective activity. Several natural product mimics that incorporate this shared structural motif were synthesized and were found to possess significant neuroprotective activity. These compounds enhanced cell viability against H(2)O(2) induced oxidative stress or cell death in PC12 neuronal cells. The compounds were also found to enhance and modulate Na(+)/K(+)-ATPase activity of PC12 cells, which may suggest that the observed neuroprotective activity is mediated, at least partly, through interaction with Na(+)/K(+)-ATPase.


Subject(s)
Biological Products/chemistry , Biomimetic Materials/chemistry , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Apoptosis/drug effects , Biological Products/pharmacology , Biomimetic Materials/chemical synthesis , Biomimetic Materials/pharmacology , Carbohydrate Sequence , Cell Death/drug effects , Cell Survival/drug effects , Hydrogen Peroxide/pharmacology , Molecular Sequence Data , Neuroprotective Agents/chemical synthesis , Oxidative Stress
7.
Neurochem Int ; 61(8): 1357-63, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23036362

ABSTRACT

Lanthionines are novel neurotrophic and neuroprotective small molecules that show promise for the treatment of neurodegenerative diseases. In particular, a recently developed, cell permeable lanthionine derivative known as LKE (lanthionine ketimine 5-ethyl ester) promotes neurite growth at low nanomolar concentrations. LKE also has neuroprotective, anti-apoptotic, and anti-inflammatory properties. Its therapeutic potential in cerebral ischemia and its mechanisms of neurotrophic action remain to be fully elucidated. Here, we hypothesize that the neuroprotective actions of LKE could result from induction or modulation of CRMP2. We found that treating primary cultured mouse neurons with LKE provided significant protection against t-butyl hydroperoxide-induced neuronal death possibly through CRMP2 upregulation. Similarly, in vivo studies showed that LKE pre and/or post-treatment protects mice against permanent distal middle cerebral artery occlusion (p-MCAO) as evidenced by lower stroke lesions and improved functional outcomes in terms of rotarod, grip strength and neurologic deficit scores in treated groups. Protein expression levels of CRMP2 were higher in brain cortices of LKE pretreated mice, suggesting that LKE's neuroprotective activity may be CRMP2 dependent. Lower activity of cleaved PARP-1 and higher activity of SIRT-1 was also observed in LKE treated group suggesting its anti-apoptotic properties. Our results suggest that LKE has potential as a therapeutic intervention in cerebral ischemia and that part of its protective mechanism may be attributed to CRMP2 mediated action and PARP-1/SIRT-1 modulation.


Subject(s)
Amino Acids, Sulfur/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Intercellular Signaling Peptides and Proteins/physiology , Nerve Tissue Proteins/physiology , Neuroprotective Agents/therapeutic use , Amino Acids, Sulfur/pharmacology , Animals , Apoptosis/drug effects , Brain Damage, Chronic/prevention & control , Cells, Cultured/drug effects , Drug Evaluation, Preclinical , Female , Hand Strength , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neuroprotective Agents/pharmacology , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Primary Cell Culture , Rotarod Performance Test , Single-Blind Method , Sirtuin 1/metabolism , tert-Butylhydroperoxide/toxicity
8.
J Pharm Sci ; 101(6): 2177-84, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22411606

ABSTRACT

The goal of this research work was to develop a novel technique to synthesize calcium alginate nanoparticles using pharmaceutically relevant microemulsions. Stable microemulsion-based reactors were prepared using aqueous sodium alginate, aqueous calcium chloride, dioctyl sodium sulfosuccinate (DOSS), and isopropyl myristate. The reactor microemulsions were characterized via conductivity and dynamic light scattering (DLS) experiments. The conductivity data indicated composition- and reagent-dependent variations in electrical conductivity when the aqueous phase containing reagents were present at or above a Wo (Wo = [DOSS]/[water]) value of 14. The reactor microemulsions were of approximately 6 nm sized droplets. When the reactor microemulsions were mixed and sonicated for 1 h approximately, 350-nm-sized calcium alginate nanoparticles were produced, as indicated by DLS measurements. The particles were isolated and characterized via low-vacuum scanning electron microscopy. The electron micrographs corroborate the DLS results. The nanoparticles were evaluated as a drug delivery system by incorporating bovine serum albumin (BSA) and performing in vitro release and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies. The BSA release profile was characterized by an initial burst release followed by a sustained-release phase. SDS-PAGE studies indicated that the incorporated protein did not suffer covalent aggregation or degradation via fragmentation.


Subject(s)
Alginates/chemical synthesis , Drug Delivery Systems , Nanoparticles , Serum Albumin, Bovine/chemistry , Electrophoresis, Polyacrylamide Gel , Emulsions , Glucuronic Acid/chemical synthesis , Hexuronic Acids/chemical synthesis , Microscopy, Electron, Scanning , Particle Size
9.
Neurobiol Dis ; 46(1): 180-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22297164

ABSTRACT

Ginkgo biloba/EGb 761® (EGb 761) is a popular and standardized natural extract used worldwide for the treatment of many ailments. Although EGb 761 is purported to have a plethora of benefits, here, we were interested to study the neuroprotective properties of EGb 761 and its components and determine whether nuclear factor E2 (Nrf2)/heme oxygenase 1 (HO1) induction of the collapsin response mediator protein 2 (CRMP2) pathway contributes to neuroprotection. Mice were pretreated with EGb 761 or one of its constituents (bilobalide, ginkgolide A, ginkgolide B, and terpene free material [TFM]) for 7days and then subjected to transient middle cerebral artery occlusion (tMCAO) and 48 h of reperfusion. All components except TFM significantly reduced infarct volumes and neurologic deficits. Next, we examined the antioxidant and neuritogenic properties of EGb 761 in primary neurons. Compared with vehicle-treated cells, pretreatment with EGb 761 significantly enhanced the survival of neurons exposed to tertiary butylhydroperoxide (t-BuOOH), hydrogen peroxide (H2O2), and N-methyl-D-aspartate (NMDA). Bilobalide and ginkgolide A also protected cells against NMDA-induced excitotoxicity. Immunofluorescence and Western blot analysis showed that EGb 761 pretreatment significantly increased the protein expression levels of Nrf2, HO1, GAPDH, ß-actin, CRMP2, and histone H3 during t-BuOOH-induced oxidative stress. These findings suggest that EGb 761 not only has antioxidant activity but also neuritogenic potential. Demonstrating such effects for possible drug discovery may prove beneficial in stroke and ischemic brain injury.


Subject(s)
Brain Ischemia/drug therapy , Heme Oxygenase-1/physiology , Intercellular Signaling Peptides and Proteins/physiology , Ischemic Preconditioning/methods , Nerve Tissue Proteins/physiology , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Animals , Brain Ischemia/metabolism , Cells, Cultured , Female , Ginkgo biloba , Ginkgolides/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/drug effects , Neurons/metabolism
10.
Endocrinology ; 151(11): 5165-73, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20843997

ABSTRACT

Polycystic ovarian syndrome (PCOS) is the leading cause of infertility in reproductive-aged women with the majority manifesting insulin resistance. To delineate the causes of insulin resistance in women with PCOS, we determined changes in the mRNA expression of insulin receptor (IR) isoforms and members of its signaling pathway in tissues of adult control (n = 7) and prenatal testosterone (T)-treated (n = 6) sheep (100 mg/kg twice a week from d 30-90 of gestation), the reproductive/metabolic characteristics of which are similar to women with PCOS. Findings revealed that prenatal T excess reduced (P < 0.05) expression of IR-B isoform (only isoform detected), insulin receptor substrate-2 (IRS-2), protein kinase B (AKt), peroxisome proliferator-activated receptor-γ (PPARγ), hormone-sensitive lipase (HSL), and mammalian target of rapamycin (mTOR) but increased expression of rapamycin-insensitive companion of mTOR (rictor), and eukaryotic initiation factor 4E (eIF4E) in the liver. Prenatal T excess increased (P < 0.05) the IR-A to IR-B isoform ratio and expression of IRS-1, glycogen synthase kinase-3α and -ß (GSK-3α and -ß), and rictor while reducing ERK1 in muscle. In the adipose tissue, prenatal T excess increased the expression of IRS-2, phosphatidylinositol 3-kinase (PI3K), PPARγ, and mTOR mRNAs. These findings provide evidence that prenatal T excess modulates in a tissue-specific manner the expression levels of several genes involved in mediating insulin action. These changes are consistent with the hypothesis that prenatal T excess disrupts the insulin sensitivity of peripheral tissues, with liver and muscle being insulin resistant and adipose tissue insulin sensitive.


Subject(s)
Adipose Tissue/metabolism , Insulin Receptor Substrate Proteins/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Receptor, Insulin/metabolism , Testosterone/metabolism , Adipose Tissue/drug effects , Androgens/metabolism , Androgens/pharmacology , Animals , Female , Insulin/metabolism , Insulin Resistance/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Liver/drug effects , Muscle, Skeletal/drug effects , PPAR gamma/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sheep , Signal Transduction/drug effects , Signal Transduction/physiology , Sterol Esterase/metabolism , TOR Serine-Threonine Kinases , Testosterone/pharmacology
11.
Biochemistry ; 46(21): 6364-74, 2007 May 29.
Article in English | MEDLINE | ID: mdl-17474716

ABSTRACT

Rep68 and Rep78 DNA helicases, encoded by adeno-associated virus 2 (AAV2), are required for replication of AAV viral DNA in infected cells. They bind to imperfect palindromic elements in the inverted terminal repeat structures at the 3'- and 5'-ends of virion DNA. The ATPase activity of Rep68 and Rep78 is stimulated up to 10-fold by DNA containing the target sequence derived from the inverted terminal repeat; nontarget DNA stimulates ATPase activity at 50-fold higher concentrations. Activation of ATPase activity of Rep68 by DNA is cooperative with a Hill coefficient of 1.8 +/- 0.2. When examined by gel filtration at 0.5 M NaCl in the absence of DNA, Rep68 self-associates in a concentration-dependent manner. In the presence of DNA containing the binding element, Rep68 (and Rep78) forms protein-DNA complexes that exhibit concentration-dependent self-association in gel filtration analysis. The ATPase activity of the isolated Rep68-DNA and Rep78-DNA complexes is not activated by additional target DNA. Results of sedimentation velocity experiments in the presence of saturating target DNA are consistent with Rep68 forming a hexamer of the protein with two copies of the DNA element. Activation of the ATPase activity of Rep68 is associated with the formation of a protein-DNA oligomer.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Dependovirus/enzymology , Viral Proteins/metabolism , DNA, Viral/metabolism , Dimerization , Enzyme Activation , Kinetics
12.
Biochemistry ; 42(18): 5333-40, 2003 May 13.
Article in English | MEDLINE | ID: mdl-12731874

ABSTRACT

The interaction of adenine nucleotides with glycyl-tRNA synthetase was examined by several experimental approaches. ATP and nonsubstrate ATP analogues render glycyl-tRNA synthetase more resistant to digestion by a number of proteases (thrombin, Arg-C, and chymotrypsin) at concentrations that correlate with their Michaelis constants or inhibition constants, consistent with their exerting an effect by binding at the ATP site. Glycine had little effect alone but potentiated the effect of ATP in increasing the resistance to thrombin digestion, consistent with the formation of an enzyme-bound adenylate. No protection from thrombin digestion was afforded by tRNA(gly). Binding constants were determined by isothermal titration calorimetry at 25 degrees C for ATP (2.5 x 10(5) M(-1)), AMPPNP (3.7 x 10(5) M(-1)), and AMPPCP (2.2 x 10(6) M(-1)). The nucleotides had similar values for DeltaH (-71 kJ mol(-1)), with values for TDeltaS that accounted for the differences in the binding constants. Near-ultraviolet CD spectra of the enzyme-nucleotide complexes indicate that the nucleotides are bound in the anti configuration. A glycyl-adenylate analogue, glycine sulfamoyl adenosine (GSAd), bound with a large value for DeltaH (-187 kJ mol(-1)), which was balanced by a large TDeltaS term to give a binding constant (3.7 x 10(6) M(-1)) only slightly larger than that of AMPPCP. Glycine binding to the enzyme could not be detected calorimetrically, and its presence did not change the thermodynamic parameters for binding of AMPPCP. AMPPNP and AMPPCP were not substrates for glycyl-tRNA synthetase. Analysis of the temperature dependence of ATP binding indicated that the heat capacity change is small, whereas the binding of GSAd is accompanied by a large negative heat capacity change (-2.6 kJ K(-1) mol(-1)). Titrations performed in buffers with different ionization enthalpies indicate that the large value for DeltaH for the adenylate analogue does not arise from a coupled protonation event. Differential scanning calorimetry indicated that glycyl-tRNA synthetase is stabilized by nucleotides. Unfolding of the protein is irreversible, and thermodynamic parameters for unfolding could therefore not be determined. The results are consistent with a significant conformational transition in glycyl-tRNA synthetase coupled to the binding of GSAd.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Escherichia coli/enzymology , Glycine-tRNA Ligase/metabolism , Nucleotides/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Adenylyl Imidodiphosphate/metabolism , Binding Sites , Calorimetry, Differential Scanning , Catalysis , Chymotrypsin/pharmacology , Circular Dichroism , Glycine-tRNA Ligase/genetics , Kinetics , Magnetic Resonance Spectroscopy , Phosphorylation , Protein Binding , Protein Conformation , Serine Endopeptidases/pharmacology , Substrate Specificity , Thermodynamics , Thrombin/pharmacology
13.
Virology ; 293(2): 345-55, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11886255

ABSTRACT

Adeno-associated virus (AAV) replication (Rep) proteins are pleiotropic effectors of viral DNA replication, RNA transcription, and site-specific integration into chromosome 19. In addition to regulating AAV gene expression, the Rep proteins modulate expression of a variety of cellular and viral genes. In this report we investigate Rep-mediated effects on expression of the adenovirus (Ad) E2a gene and the Ad major late promoter. We have found that all four Rep proteins repress E2a expression at the protein level, with Rep40 showing the weakest repression. Mutations in the purine nucleotide binding (PNB) site weakened each of the protein's abilities to repress expression. Analysis of steady-state E2a mRNA showed that Rep proteins decreased mRNA levels, but to a lesser extent than E2a protein levels. Analysis of mRNA stability demonstrated that neither Rep78 nor Rep52 affected E2a mRNA stability, suggesting that the decrease in mRNA is due to Rep-mediated inhibition of Ad E2a transcription. To determine if Rep68 proteins could directly inhibit RNA transcription, we performed in vitro transcription assays using HeLa nuclear extracts supplemented with Rep68 and Rep68PNB. We demonstrate that Rep68, but not mutant Rep68PNB, blocked in vitro transcription of a template containing the Ad major late promoter. These results provide insight into how AAV and its encoded Rep proteins interact with Ad and provide a model system for the study of AAV and host-cell interactions.


Subject(s)
Adenoviridae/metabolism , Adenovirus E2 Proteins/metabolism , DNA Helicases/genetics , Dependovirus/chemistry , Gene Expression Regulation, Viral , Trans-Activators/genetics , Adenovirus E2 Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Down-Regulation , Gene Expression , HeLa Cells , Humans , Mutation , RNA, Messenger/metabolism , RNA, Viral/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...