Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906188

ABSTRACT

The aim of this study was to compare the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), phenotypic and molecular methods for the identification of Fusarium species complexes isolated from clinical cases in the State of Sao Paulo (Brazil) between the years 2001 and 2017. Sequencing of ITS region of ribosomal DNA and elongation factor 1 alpha gene (ET1α) were used as reference method in the analysis of a total of 108 Fusarium spp. clinical strains isolated from human hosts with superficial and systemic infections. Agreement between MALDI-TOF-MS and molecular data was observed for 97 out of 108 clinical isolates (89.8%), whereas five (4.6%) and six (5.5%) clinical isolates were misidentified and were not identified by MALDI-TOF MS, respectively. ITS region sequences and MALDI-TOF MS mass spectra identified and grouped correctly most of Fusarium clinical isolates at species complex level. This investigation highlights the potential of MALDI-TOF MS technique as a fast and cost-efficient alternative for clinical Fusarium identification. However, MALDI-TOF MS requires a more accurate and larger database. This work is the first comprehensive report for Fusarium population, based on phenotypic analyses, proteomic profile by MALDI-TOF and phylogenetic analyses of Fusarium species complexes isolated from clinical cases in the State of Sao Paulo, Brazil.

2.
Fungal Biol ; 122(6): 436-448, 2018 06.
Article in English | MEDLINE | ID: mdl-29801787

ABSTRACT

Neoscytalidium spp. are ascomycetous fungi consisting of pigmented and hyaline varieties both able to cause skin and nail infection. Their color-based identification is inaccurate and may compromise the outcome of the studies with these fungi. The aim of this study was to genotype 32 isolates morphologically identified as Neoscytalidiumdimidiatum or N. dimidiatum var. hyalinum by multilocus sequence typing (MLST), differentiate the two varieties by their sequence types, evaluate their susceptibility to seven commercial antifungal drugs [amphotericin B (AMB), voriconazole (VOR), terbinafine (TER), 5-flucytosine (5FC), ketoconazole (KET), fluconazole (FLU), and caspofungin (CAS)], and also to the antimicrobial photodynamic treatment (APDT) with the phenothiazinium photosensitizers (PS) methylene blue (MB), new methylene blue (NMBN), toluidine blue O (TBO) and the pentacyclic derivative S137. The efficacy of each PS was determined, initially, based on its minimal inhibitory concentration (MIC). Additionally, the APDT effects with each PS on the survival of ungerminated and germinated arthroconidia of both varieties were evaluated. Seven loci of Neoscytalidium spp. were sequenced on MLST revealing eight polymorphic sites and six sequence types (ST). All N. dimidiatum var. hyalinum isolates were clustered in a single ST. AMB, VOR and TER were the most effective antifungal agents against both varieties. The hyaline variety isolates were much less tolerant to the azoles than the isolates of the pigmented variety. APDT with S137 showed the lowest MIC for all the isolates of both varieties. APDT with all the PS killed both ungerminated and germinated arthroconidia of both varieties reducing the survival up to 5 logs. Isolates of the hyaline variety were also less tolerant to APDT. APDT with the four PS also increased the plasma membrane permeability of arthroconidia of both varieties but only NMBN and S137 caused peroxidation of the membrane lipids.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/classification , Ascomycota/drug effects , Drug Resistance, Fungal , Phenothiazines/pharmacology , Photosensitizing Agents/pharmacology , Ascomycota/genetics , Ascomycota/isolation & purification , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Mycological Typing Techniques , Mycoses/microbiology , Spores, Fungal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...