Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834033

ABSTRACT

Camelids have the peculiarity of having classical antibodies composed of heavy and light chains as well as single-chain antibodies. They have lost their light chains and one heavy-chain domain. This evolutionary feature means that their terminal heavy-chain domain, VH, called VHH here, has no partner and forms an independent domain. The VHH is small and easy to express alone; it retains thermodynamic and interaction properties. Consequently, VHHs have garnered significant interest from both biotechnological and pharmaceutical perspectives. However, due to their origin in camelids, they cannot be used directly on humans. A humanization step is needed before a possible use. However, changes, even in the constant parts of the antibodies, can lead to a loss of quality. A dedicated tool, Llamanade, has recently been made available to the scientific community. In a previous paper, we already showed the different types of VHH dynamics. Here, we have selected a representative VHH and tested two humanization hypotheses to accurately assess the potential impact of these changes. This example shows that despite the non-negligible change (1/10th of residues) brought about by humanization, the effect is not drastic, and the humanized VHH retains conformational properties quite similar to those of the camelid VHH.


Subject(s)
Camelids, New World , Immunoglobulin Heavy Chains , Humans , Animals , Immunoglobulin Heavy Chains/chemistry , Antibodies , Biotechnology
2.
J Biomol Struct Dyn ; 41(22): 13287-13301, 2023.
Article in English | MEDLINE | ID: mdl-36752327

ABSTRACT

Heavy Chain Only Antibodies are specific to Camelid species. Despite the lack of the light chain variable domain, their heavy chain variable domain (VH) domain, named VHH or nanobody, has promising potential applications in research and therapeutic fields. The structural study of VHH is therefore of great interest. Unfortunately, considering the huge amount of sequences that might be produced, only about one thousand of VHH experimental structures are publicly available in the Protein Data Bank, implying that structural model prediction of VHH is a necessary alternative to obtaining 3D information besides its sequence. The present study aims to assess and compare the quality of predictions from different modelling methodologies. Established comparative & homology modelling approaches to recent Deep Learning-based modelling strategies were applied, i.e. Modeller using single or multiple structural templates, ModWeb, SwissModel (with two evaluation schema), RoseTTAfold, AlphaFold 2 and NanoNet. The prediction accuracy was evaluated using RMSD, TM-score, GDT-TS, GDT-HA and Protein Blocks distance metrics. Besides the global structure assessment, we performed specific analyses of Frameworks and CDRs structures. We observed that AlphaFold 2 and especially NanoNet performed better than the other evaluated softwares. Importantly, we performed molecular dynamics simulations of an experimental structure and a NanoNet predicted model of a VHH in order to compare the global structural flexibility and local conformations using Protein Blocks. Despite rather similar structures, substantial differences in dynamical properties were observed, which underlies the complexity of the task of model evaluation.Communicated by Ramaswamy H. Sarma.


Subject(s)
Immunoglobulin Heavy Chains , Immunoglobulin Variable Region , Immunoglobulin Variable Region/chemistry , Immunoglobulin Heavy Chains/chemistry
3.
Int J Mol Sci ; 23(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35409081

ABSTRACT

VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.


Subject(s)
Camelids, New World , Immunoglobulin Heavy Chains , Amino Acid Sequence , Animals , Antibodies , Immunoglobulin Heavy Chains/chemistry , Models, Structural
4.
Proteins ; 88(8): 986-998, 2020 08.
Article in English | MEDLINE | ID: mdl-31746034

ABSTRACT

Computational structural prediction of macromolecular interactions is a fundamental tool toward the global understanding of cellular processes. The Critical Assessment of PRediction of Interactions (CAPRI) community-wide experiment provides excellent opportunities for blind testing computational docking methods and includes original targets, thus widening the range of docking applications. Our participation in CAPRI rounds 38 to 45 enabled us to expand the way we include evolutionary information in structural predictions beyond our standard free docking InterEvDock pipeline. InterEvDock integrates a coarse-grained potential that accounts for interface coevolution based on joint multiple sequence alignments of two protein partners (co-alignments). However, even though such co-alignments could be built for none of the CAPRI targets in rounds 38 to 45, including host-pathogen and protein-oligosaccharide complexes and a redesigned interface, we identified multiple strategies that can be used to incorporate evolutionary constraints, which helped us to identify the most likely macromolecular binding modes. These strategies include template-based modeling where only local adjustments should be applied when query-template sequence identity is above 30% and larger perturbations are needed below this threshold; covariation-based structure prediction for individual protein partners; and the identification of evolutionarily conserved and structurally recurrent anchoring interface motifs. Overall, we submitted correct predictions among the top 5 models for 12 out of 19 interface challenges, including four High- and five Medium-quality predictions. Our top 20 models included correct predictions for three out of the five targets we missed in the top 5, including two targets for which misleading biological data led us to downgrade correct free docking models.


Subject(s)
Molecular Docking Simulation , Oligosaccharides/chemistry , Peptides/chemistry , Proteins/chemistry , Software , Amino Acid Sequence , Binding Sites , Humans , Ligands , Oligosaccharides/metabolism , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Proteins/metabolism , Research Design , Structural Homology, Protein
5.
Methods Mol Biol ; 1764: 429-447, 2018.
Article in English | MEDLINE | ID: mdl-29605932

ABSTRACT

The structural modeling of protein complexes by docking simulations has been attracting increasing interest with the rise of proteomics and of the number of experimentally identified binary interactions. Structures of unbound partners, either modeled or experimentally determined, can be used as input to sample as extensively as possible all putative binding modes and single out the most plausible ones. At the scoring step, evolutionary information contained in the joint multiple sequence alignments of both partners can provide key insights to recognize correct interfaces. Here, we describe a computational protocol based on the InterEvDock web server to exploit coevolution constraints in protein-protein docking methods. We provide methodology guidelines to prepare the input protein structures and generate improved alignments. We also explain how to extract and use the information returned by the server through the analysis of two representative examples.


Subject(s)
Adenylyl Cyclases/metabolism , Evolution, Molecular , GTP-Binding Protein alpha Subunits, Gs/metabolism , Molecular Docking Simulation , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae Proteins/metabolism , Adenylyl Cyclases/chemistry , Algorithms , GTP-Binding Protein alpha Subunits, Gs/chemistry , Proteasome Endopeptidase Complex/chemistry , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry
6.
J Neurooncol ; 138(3): 487, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29549621

ABSTRACT

The names of authors Marc Sanson and Jean-Yves Delattre were incorrectly presented in the initial online publication. The original article has been corrected.

7.
J Neurooncol ; 138(3): 479-486, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29520610

ABSTRACT

ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p < 0.01) and multivariate analyses including MGMT promoter methylation (p = 0.05) suggesting reduced sensitivity to temozolomide in ABCA13 overexpressing GBM. Expression of ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM-PDCL. ABCA13 expression is an independent prognostic factor in newly diagnosed GBM patients. Further prospective studies are warranted to investigate whether ABCA13 expression can be used to further personalize treatments for GBM.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/therapy , Cell Line, Tumor , Chemoradiotherapy , Cohort Studies , DNA Methylation , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Drug Resistance, Neoplasm/physiology , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/mortality , Glioblastoma/therapy , Humans , Prognosis , Promoter Regions, Genetic , RNA, Messenger/metabolism , Survival Analysis , Temozolomide/pharmacology , Tumor Microenvironment , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...