Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 13998, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070896

ABSTRACT

Proteolytic enzymes have shown efficacy in cancer therapy. We present a combination of the two pro-enzymes Trypsinogen and Chymotrypsinogen A with potent in vitro and in vivo anti-tumour efficacy. A synergetic anti-tumour effect for Trypsinogen and Chymotrypsinogen A was determined at a ratio 1:6 (named PRP) using 24 human cancer cell lines. The antiangiogenic effect of PRP was analysed by matrigel-based tube formation and by fibrous capsule formation assays. Furthermore, cell invasion and wound healing assays together with qRT-PCR determination of epithelial-to-mesenchymal transition (EMT) markers were performed on human cancer cells treated with PRP. Additionally, in vivo pharmacokinetic studies were implemented and the PRP's anti-tumour efficacy was explored against orthotopic pancreatic and ovarian cancer tumours. PRP formulation was proven to inhibit in vitro angiogenesis, tumour growth, cancer cell migration and invasiveness; and to be an effective and well tolerated in vivo anti-tumour treatment. Finally, the clinical efficacy of a suppository formulation containing both pancreatic pro-enzymes in the context of a UK Pharmaceuticals Special Scheme was evaluated in advanced cancer patients. Consequently, PRP could have relevant oncological clinical applications for the treatment of advanced or metastatic pancreatic adenocarcinoma and advanced epithelial ovarian cancer.


Subject(s)
Chymotrypsinogen/administration & dosage , Enzyme Precursors/administration & dosage , Ovarian Neoplasms/prevention & control , Pancreas/enzymology , Pancreatic Neoplasms/prevention & control , Trypsinogen/administration & dosage , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Neoplasm Metastasis , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pilot Projects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Protein Expr Purif ; 130: 137-145, 2017 02.
Article in English | MEDLINE | ID: mdl-27721079

ABSTRACT

HIV Gag (Pr55Gag), a multidomain polyprotein that orchestrates the assembly and release of the human immunodeficiency virus (HIV), is an active target of antiretroviral inhibitor development. However, highly pure, stable, recombinant Pr55Gag has been difficult to produce in quantities sufficient for biophysical studies due to its susceptibility to proteolysis by cellular proteases during purification. Stability has been improved by using a construct that omits the p6 domain (Δp6). In vivo, p6 is crucial to the budding process and interacts with protein complexes in the ESCRT (Endosomal Sorting Complexes Required for Transport) pathway, it has been difficult to study its role in the context of Gag using in vitro approaches. Here we report the generation of a full length Gag construct containing a tobacco etch virus (TEV)-cleavable C-terminal hexahistidine tag, allowing a detailed comparison of its nucleic acid binding properties with other constructs, including untagged, Δp6, and C-terminally tagged (TEV-cleavable and non-cleavable) Gags, respectively. We have developed a standard expression and purification protocol that minimizes nucleic acid contamination and produces milligram quantities of full length Gag for in vitro studies and compound screening purposes. We found that the presence of a carboxyl-terminal hexahistidine tag changes the nucleic binding properties compared to the proteins that did not contain the tag (full length protein that was either untagged or reulted from removal of the tag during purification). The HIV Gag expression and purification protocol described herein provides a facile method of obtaining large quantities of high quality protein for investigators who wish to study the full length protein or the effect of the p6 domain on the biophysical properties of Gag.


Subject(s)
DNA/chemistry , Escherichia coli/metabolism , HIV-1/genetics , Histidine , Protein Precursors , Recombinant Fusion Proteins , Escherichia coli/genetics , Histidine/biosynthesis , Histidine/chemistry , Histidine/genetics , Histidine/isolation & purification , Humans , Protein Binding , Protein Precursors/biosynthesis , Protein Precursors/chemistry , Protein Precursors/genetics , Protein Precursors/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
3.
J Virol ; 88(14): 7852-61, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24789780

ABSTRACT

Host cell tRNAs are recruited for use as primers to initiate reverse transcription in retroviruses. Human immunodeficiency virus type 1 (HIV-1) uses tRNA(Lys3) as the replication primer, whereas Rous sarcoma virus (RSV) uses tRNA(Trp). The nucleic acid (NA) chaperone function of the nucleocapsid (NC) domain of HIV-1 Gag is responsible for annealing tRNA(Lys3) to the genomic RNA (gRNA) primer binding site (PBS). Compared to HIV-1, little is known about the chaperone activity of RSV Gag. In this work, using purified RSV Gag containing an N-terminal His tag and a deletion of the majority of the protease domain (H6.Gag.3h), gel shift assays were used to monitor the annealing of tRNA(Trp) to a PBS-containing RSV RNA. Here, we show that similar to HIV-1 Gag lacking the p6 domain (GagΔp6), RSV H6.Gag.3h is a more efficient chaperone on a molar basis than NC; however, in contrast to the HIV-1 system, both RSV H6.Gag.3h and NC have comparable annealing rates at protein saturation. The NC domain of RSV H6.Gag.3h is required for annealing, whereas deletion of the matrix (MA) domain, which stimulates the rate of HIV-1 GagΔp6 annealing, has little effect on RSV H6.Gag.3h chaperone function. Competition assays confirmed that RSV MA binds inositol phosphates (IPs), but in contrast to HIV-1 GagΔp6, IPs do not stimulate RSV H6.Gag.3h chaperone activity unless the MA domain is replaced with HIV-1 MA. We conclude that differences in the MA domains are primarily responsible for mechanistic differences in RSV and HIV-1 Gag NA chaperone function. Importance: Mounting evidence suggests that the Gag polyprotein is responsible for annealing primer tRNAs to the PBS to initiate reverse transcription in retroviruses, but only HIV-1 Gag chaperone activity has been demonstrated in vitro. Understanding RSV Gag's NA chaperone function will allow us to determine whether there is a common mechanism among retroviruses. This report shows for the first time that full-length RSV Gag lacking the protease domain is a highly efficient NA chaperone in vitro, and NC is required for this activity. In contrast to results obtained for HIV-1 Gag, due to the weak nucleic acid binding affinity of the RSV MA domain, inositol phosphates do not regulate RSV Gag-facilitated tRNA annealing despite the fact that they bind to MA. These studies provide insight into the viral regulation of tRNA primer annealing, which is a potential target for antiretroviral therapy.


Subject(s)
Gene Products, gag/metabolism , HIV-1/physiology , Molecular Chaperones/metabolism , Phosphoproteins/metabolism , RNA, Transfer, Trp/metabolism , RNA, Viral/metabolism , Rous sarcoma virus/physiology , Viral Matrix Proteins/metabolism , Electrophoretic Mobility Shift Assay , HIV Antigens/metabolism , Humans , gag Gene Products, Human Immunodeficiency Virus/metabolism
4.
J Virol ; 87(6): 3609-15, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23325682

ABSTRACT

Retroviral Gag proteins direct virus particle assembly from the plasma membrane (PM). Phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] plays a role in PM targeting of several retroviral Gag proteins. Here we report that depletion of intracellular PI(4,5)P(2) and phosphatidylinositol-(3,4,5)-triphosphate [PI(3,4,5)P(3)] levels impaired Rous sarcoma virus (RSV) Gag PM localization. Gag mutants deficient in nuclear trafficking were less sensitive to reduction of intracellular PI(4,5)P(2) and PI(3,4,5)P(3), suggesting a possible connection between Gag nuclear trafficking and phosphoinositide-dependent PM targeting.


Subject(s)
Cell Membrane/metabolism , Gene Products, gag/metabolism , Phosphatidylinositols/metabolism , Phosphoproteins/metabolism , Rous sarcoma virus/physiology , Viral Matrix Proteins/metabolism , Virus Assembly , Gene Products, gag/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphoproteins/genetics , Protein Transport , Viral Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...