Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 4(4): 1125-1135, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-36131772

ABSTRACT

ZnO nanowires (NWs) are very attractive for a wide range of nanotechnological applications owing to their tunable electron concentration via structural and surface defect engineering. A 2D electrical profiling of these defects is necessary to understand their restructuring dynamics during engineering processes. Our work proposes the exploration of individual ZnO NWs, dispersed on a SiO2/p++-Si substrate without any embedding matrix, along their axial direction using scanning capacitance microscopy (SCM), which is a useful tool for 2D carrier profiling. ZnO NWs are hydrothermally grown using 0-20 mM ammonium hydroxide (NH4OH), one of the reactants of the hydrothermal synthesis, and then annealed in a tube oven at 350 °C/1.5-15 h and 450 °C/15 h. While the as-grown ZnO NWs are highly conductive, the annealed ones exhibit significant SCM data with a high signal-to-noise ratio and temperature-dependent uniformity. The SCM signal of ZnO NWs is influenced by both their reduced dimensionality and the electron screening degree inside them. The electrical activity of ZnO NWs is only observed below a critical defect concentration that depends on the annealing temperature. Optimal SCM signals of 200 and 147 mV are obtained for samples with 0 and 20 mM NH4OH, respectively, and annealed at 350 °C/15 h. The corresponding electron concentrations of 3.27 × 1018 and 4.58 × 1018 cm-3 were estimated from the calibration curve, respectively. While thermal treatment in air of ZnO NWs is an effective approach to tune the defect density, 2D electrical mapping enables identifying their optimal electrical characteristics, which could help to boost the performance of final devices exploiting their coupled semiconducting-piezoelectric properties.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745435

ABSTRACT

Electron and hole transport layers (ETL and HTL) play an essential role in shaping the photovoltaic performance of perovskite solar cells. While compact metal oxide ETL have been largely explored in planar n-i-p device architectures, aligned nanowires or nanorods remain highly relevant for efficient charge extraction and directional transport. In this study, we have systematically grown ZnO nanowires (ZnO NWs) over aluminum-doped zinc oxide (AZO) substrates using a low-temperature method, hydrothermal growth (HTG). The main growth parameters were varied, such as hydrothermal precursors concentrations (zinc nitrate hexahydrate, hexamethylenetetramine, polyethylenimine) and growing time, in order to finely control NW properties (length, diameter, density, and void fraction). The results show that ZnO NWs grown on AZO substrates offer highly dense, well-aligned nanowires of high crystallinity compared to conventional substrates such as FTO, while demonstrating efficient FACsPb(IBr)3 perovskite device performance, without the requirement of conventional compact hole blocking layers. The device performances are discussed based on NW properties, including void fraction and aspect ratio (NW length over diameter). Finally, AZO/ZnO NW-based devices were fabricated with a recent HTL material based on a carbazole moiety (Cz-Pyr) and compared to the spiro-OMeTAD reference. Our study shows that the Cz-Pyr-based device provides similar performance to that of spiro-OMeTAD while demonstrating a promising stability in ambient conditions and under continuous illumination, as revealed by a preliminary aging test.

3.
Small ; 18(18): e2106825, 2022 May.
Article in English | MEDLINE | ID: mdl-35253990

ABSTRACT

Sintering is a very important process in materials science and technological applications. Despite breakthroughs in achieving optimized piezoelectric properties, fundamentals of K0.5 Na0.5 NbO3 (KNN) sintering are not yet fully understood, facing densification versus grain growth competition. At present, microscale events during KNN sintering under reducing atmospheres are real-time monitored using a High Temperature-Environmental Scanning Electron Microscope. A two contacting KNN particles model satisfying the Kingery and Berg's bulk diffusion model is reported. Dynamic events like individual grain growth and grain elimination process are explored through a postanalysis of recorded image series. The diffusion coefficient for oxygen vacancies of 10-8 cm2 s-1 and average boundary mobility of 10-9 cm4 J-1 s-1 are reported for the KNN ceramics. Moreover, the local pore shrinkage is consistent with the Kingery and François's concept of pore stability except that pore curvatures are not all concave, convex or flat due to anisotropic grain-boundary energies. The global grain growth kinetics are described using parabolic and/or cubic laws. The effect of atmospheres and microstructure evolution on the intrinsic and extrinsic contributions to the dielectric response using Rayleigh's law is also explored. These results bring a new breath for KNN sintering studies in order to adapt the sintering process.

4.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071709

ABSTRACT

Flexible piezoelectric nanogenerators (PENGs) are very attractive for mechanical energy harvesting due to their high potential for realizing self-powered sensors and low-power electronics. In this paper, a PENG that is based on zinc oxide (ZnO) nanowires (NWs) is fabricated on flexible and transparent Polydimethylsiloxane (PDMS) substrate. The ZnO NWs were deposited on two different seed layer structures, i.e., gold (Au)/ZnO and tin-doped indium-oxide (ITO)/ZnO, using hydrothermal synthesis. Along with the structural and morphological analyses of ZnO NWs, the electrical characterization was also investigated for ZnO NWs-based flexible PENGs. In order to evaluate the suitability of the PENG device structure, the electrical output performance was studied. By applying a periodic mechanical force of 3 N, the ZnO NWs-based flexible PENG generated a maximum root mean square (RMS) voltage and average power of 2.7 V and 64 nW, respectively. Moreover, the comparison between the fabricated device performances shows that a higher electrical output can be obtained when ITO/ZnO seed layer structure is adopted. The proposed ZnO NWs-based PENG structure can provide a flexible and cost-effective device for supplying portable electronics.

5.
Materials (Basel) ; 12(16)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394800

ABSTRACT

In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were investigated using Scanning Electron Microscopy (SEM) and the analysis of crystalline quality and growth orientation was studied using X-ray Diffraction (XRD). The obtained ZnO NWs are found to be highly dense, uniformly distributed and vertically well aligned on the ZnO and AZO seed layers, while ZnO NWs grown on Au possess a low density and follow a non-uniform distribution. Moreover, the NWs exhibited good crystal quality over the seed layers. The piezoelectric nanogenerator (PENG) consists of ZnO NWs grown on the three different seed layers, parylene-C matrix, Ti/Al top electrode and poly(dimethylsiloxane) (PDMS) encapsulated polymer composite. The measurements of the open circuit voltage (VOC) were around 272 mV, 36 mV for ZnO, AZO seed layers while the PENG including Au seed layer presented a short-circuited state. This study is an important step in order to investigate the effect of different seed layers influencing the magnitude of the generated electrical performances under identical growth and measurement conditions. It will also help identify the most suitable seed layers for energy harvesting devices and their future integration in industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...