Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39345488

ABSTRACT

Purpose: We previously developed an approach to calibrate computational tools for clinical variant classification, updating recommendations for the reliable use of variant impact predictors to provide evidence strength up to Strong. A new generation of tools using distinctive approaches have since been released, and these methods must be independently calibrated for clinical application. Method: Using our local posterior probability-based calibration and our established data set of ClinVar pathogenic and benign variants, we determined the strength of evidence provided by three new tools (AlphaMissense, ESM1b, VARITY) and calibrated scores meeting each evidence strength. Results: All three tools reached the Strong level of evidence for variant pathogenicity and Moderate for benignity, though sometimes for few variants. Compared to previously recommended tools, these yielded at best only modest improvements in the tradeoffs of evidence strength and false positive predictions. Conclusion: At calibrated thresholds, three new computational predictors provided evidence for variant pathogenicity at similar strength to the four previously recommended predictors (and comparable with functional assays for some variants). This calibration broadens the scope of computational tools for application in clinical variant classification. Their new approaches offer promise for future advancement of the field.

2.
Genet Med ; 26(11): 101213, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39030733

ABSTRACT

PURPOSE: To investigate the number of rare missense variants observed in human genome sequences by ACMG/AMP PP3/BP4 evidence strength, following the ClinGen-calibrated PP3/BP4 computational recommendations. METHODS: Missense variants from the genome sequences of 300 probands from the Rare Genomes Project with suspected rare disease were analyzed using computational prediction tools that were able to reach PP3_Strong and BP4_Moderate evidence strengths (BayesDel, MutPred2, REVEL, and VEST4). The numbers of variants at each evidence strength were analyzed across disease-associated genes and genome-wide. RESULTS: From a median of 75.5 rare (≤1% allele frequency) missense variants in disease-associated genes per proband, a median of one reached PP3_Strong, 3-5 PP3_Moderate, and 3-5 PP3_Supporting. Most were allocated BP4 evidence (median 41-49 per proband) or were indeterminate (median 17.5-19 per proband). Extending the analysis to all protein-coding genes genome-wide, the number of variants reaching PP3_Strong score thresholds increased approximately 2.6-fold compared with disease-associated genes, with a median per proband of 1-3 PP3_Strong, 8-16 PP3_Moderate, and 10-17 PP3_Supporting. CONCLUSION: A small number of variants per proband reached PP3_Strong and PP3_Moderate in 3424 disease-associated genes. Although not the intended use of the recommendations, this was also observed genome-wide. Use of PP3/BP4 evidence as recommended from calibrated computational prediction tools in the clinical diagnostic laboratory is unlikely to inappropriately contribute to the classification of an excessive number of variants as pathogenic or likely pathogenic by ACMG/AMP rules.

3.
medRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746299

ABSTRACT

Background: Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUS), APC-specific ACMG/AMP variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP). Methods: A streamlined algorithm using the APC -specific criteria was developed and applied to assess all APC variants in ClinVar and the InSiGHT international reference APC LOVD variant database. Results: A total of 10,228 unique APC variants were analysed. Among the ClinVar and LOVD variants with an initial classification of (Likely) Benign or (Likely) Pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUS were reclassified into clinically actionable classes, the vast majority as (Likely) Benign. The total number of VUS was reduced by 37%. In 21 out of 36 (58%) promising APC variants that remained VUS despite evidence for pathogenicity, a data mining-driven work-up allowed their reclassification as (Likely) Pathogenic. Conclusions: The application of APC -specific criteria substantially reduced the number of VUS in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalisable model for other gene-/disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUS that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.

4.
Res Sq ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37886564

ABSTRACT

Background: RNA-sequencing (RNA-seq) has revolutionized the exploration of biological mechanisms, shedding light on the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs), across various biological processes, including stress responses. Despite these advancements, there remains a gap in our understanding of the implications of different RNA-seq library protocols on comprehensive lncRNA expression analysis, particularly in non-mammalian organisms. Results: In this study, we sought to bridge this knowledge gap by investigating lncRNA expression patterns in Drosophila melanogaster under thermal stress conditions. To achieve this, we conducted a comparative analysis of two RNA-seq library protocols: polyA + RNA capture and rRNA-depletion. Our approach involved the development and application of a Transcriptome Analysis Pipeline (TAP) designed to systematically assess both the technical and functional dimensions of RNA-seq, facilitating a robust comparison of these library protocols. Our findings underscore the efficacy of the polyA + protocol in capturing the majority of expressed lncRNAs within the Drosophila melanogaster transcriptome. In contrast, rRNA-depletion exhibited limited advantages in the context of D. melanogaster studies. Notably, the polyA + protocol demonstrated superior performance in terms of usable read yield and the accurate detection of splice junctions. Conclusions: Our study introduces a versatile transcriptomic analysis pipeline, TAP, designed to uniformly process RNA-seq data from any organism with a reference genome. It also highlights the significance of selecting an appropriate RNA-seq library protocol tailored to the specific research context. Background: Advances in next generation sequencing (NGS) technologies enable the comprehensive analysis of genetic sequences of organisms in a relatively cost-effective manner [1, 2]. Among these technologies, RNA-sequencing (RNA-seq) has emerged as a preeminent method to study fundamental biological mechanisms at the level of cells, tissues, and whole organisms. RNA-seq enables the detection and quantification of various RNA populations, including messenger RNA (mRNA) and various species of non-coding RNA, such as long non-coding RNA (lncRNA), as well as an assessment of features including splice junctions in RNA.

5.
Insects ; 13(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35447785

ABSTRACT

Diapause is an alternate development program that synchronizes an insect's life cycle with seasonally abundant resources and ensures survival in unfavorable conditions. The physiological basis of diapause has been well characterized, but the molecular mechanisms regulating it are still being elucidated. Here, we present a de novo transcriptome and quantify transcript expression during diapause in the convergent lady beetle Hippodamia convergens. H. convergens is used as an augmentative biocontrol agent, and adult females undergo reproductive diapause that is regulated by photoperiod. We sampled females at three stages (early, mid, and late diapause) and compared transcript expression to non-diapausing individuals. Based on principle component analysis, the transcriptomes of diapausing beetles were distinct from non-diapausing beetles, and the three diapausing points tended to cluster together. However, there were still classes of transcripts that differed in expression across distinct phases of diapause. In general, transcripts involved in muscle function and flight were upregulated during diapause, likely to support dispersal flights that occur during diapause, while transcripts involved in ovarian development were downregulated. This information could be used to improve biological control by manipulating diapause. Additionally, our data contribute to a growing understanding of the genetic regulation of diapause across diverse insects.

6.
ACS Appl Bio Mater ; 4(12): 8267-8276, 2021 12 20.
Article in English | MEDLINE | ID: mdl-35005909

ABSTRACT

Nanoparticle delivery of polynucleic acids traditionally relies on the modulation of surface interactions to achieve loading and release. This work investigates the additional role of confinement in mobility of dsRNA (84 and 282 base pair (bp) sequences of Spodoptera frugiperda) as a function of silica nanopore size (nonporous, 3.9, 8.0, and 11.3 nm). Amine-functionalized nanoporous silica microspheres (NPSMs, ∼10 µm) are used to directly visualize the loading and exchange of fluorescently labeled dsRNA. Porous particles are fully accessible to both lengths of dsRNA by passive diffusion, except for 282 bp dsRNA in 3.9 nm pores. The stiffness of dsRNA suggests that encapsulation occurs by threading into nanopores, which is inhibited when the ratio of dsRNA length to pore size is large. The mobility of dsRNA at the surface and in the core of NPSMs, as measured by fluorescence recovery after photobleaching, is similar. The mobility increases with pore size (from 0.0002 to 0.001 µm2/s for 84 bp dsRNA in 3.9-11.3 nm pores) and decreases with the length of dsRNA. However, when the dsRNA is unable to load into the pores (on nonporous particles and for 282 bp dsRNA in 3.9 nm pores), surface mobility is not detectable. The pore structure appears to serve as a "source" to provide a mobile network of dsRNA at the particle surface. The importance of mobility is demonstrated by exchange experiments, where NPSMs saturated with mobile dsRNA can exchange dsRNA with the surrounding solution, while immobile dsRNA is not exchanged. These results indicate that nanoparticle synthesis techniques that provide pores large enough to take up polynucleic acids internally (and not simply on the external surface of the particle) can be harnessed to design polynucleic acid/nanoporous silica combinations for controlled mobility as a path forward toward effective nanocarriers.


Subject(s)
Nanoparticles , Nanopores , Nanoparticles/chemistry , Porosity , RNA, Double-Stranded , Silicon Dioxide/chemistry
7.
J Phys Chem B ; 124(39): 8549-8561, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32881500

ABSTRACT

Amine-functionalized mesoporous silica nanoparticles (MSNPAs) are ideal carriers for oligonucleotides for gene delivery and RNA interference. This investigation examines the thermodynamic driving force of interactions of double-stranded (ds) RNA with MSNPAs as a function of RNA length (84 and 282 base pair) and particle pore diameter (nonporous, 2.7, 4.3, and 8.1 nm) using isothermal titration calorimetry, extending knowledge of solution-based nucleic acid-polycation interactions to RNA confined in nanopores. Adsorption of RNA follows a two-step process: endothermic interactions driven by entropic contribution from counterion (and water) release and an exothermic regime dominated by short-range interactions within the pores. Evidence of hindered pore loading of the longer RNA and pore size-dependent confinement of RNA in the MSPAs is provided from the relative contributions of the endothermic and exothermic regimes. Reduction of endothermic and exothermic enthalpies in both regimes in the presence of salt for both lengths of RNA indicates the significant contribution of short-range electrostatic interactions, whereas ΔH and ΔG values are consistent with conformation changes and desolvation of nucleic acids upon binding with polycations. Knowledge of the interactions between RNA and functionalized porous nanoparticles will aid in porous nanocarrier design suitable for functional RNA delivery.


Subject(s)
Nanoparticles , Nanopores , Adsorption , Porosity , RNA , Silicon Dioxide
8.
J Exp Biol ; 223(Pt 2)2020 01 27.
Article in English | MEDLINE | ID: mdl-31862846

ABSTRACT

The ability to quickly respond to changes in environmental temperature is critical for organisms living in thermally variable environments. To cope with sudden drops in temperature, insects and other ectotherms are capable of rapid cold hardening (RCH), in which mild chilling significantly enhances cold tolerance within minutes. While the ecological significance of RCH is well established, the mechanisms underlying RCH are still poorly understood. Previous work has demonstrated that RCH is regulated at the cellular level by post-translational signaling mechanisms, and here we tested the hypothesis that cultured cells are capable of RCH. A 2 h cold shock at -8°C significantly reduced the metabolic viability of Drosophila S2 cells, but pre-treatment with RCH at 4°C for 2 h prevented this decrease in viability. Thus, S2 cells are capable of RCH in a similar manner to whole insects and provide a new system for investigating the cell biology of RCH.


Subject(s)
Acclimatization , Cold Temperature , Drosophila melanogaster/physiology , Animals , Cell Biology , Cell Line , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL