Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biotechnol ; 37(7): 761-774, 2019 07.
Article in English | MEDLINE | ID: mdl-30654913

ABSTRACT

Quantitative PCR (qPCR) is one of the most common techniques for quantification of nucleic acid molecules in biological and environmental samples. Although the methodology is perceived to be relatively simple, there are a number of steps and reagents that require optimization and validation to ensure reproducible data that accurately reflect the biological question(s) being posed. This review article describes and illustrates the critical pitfalls and sources of error in qPCR experiments, along with a rigorous, stepwise process to minimize variability, time, and cost in generating reproducible, publication quality data every time. Finally, an approach to make an informed choice between qPCR and digital PCR technologies is described.


Subject(s)
Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Costs and Cost Analysis , Real-Time Polymerase Chain Reaction/economics , Reproducibility of Results , Time
2.
Pediatr Res ; 67(4): 375-81, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20057335

ABSTRACT

Alveolarization depends on circulating glucocorticoid (GC), retinoid (RA), and vitamin D (VitD). Bronchopulmonary dysplasia, a leading cause of neonatal morbidity, is associated with arrested alveolarization. In hyperoxia-exposed rats displaying features of bronchopulmonary dysplasia, reduced levels of late gestation lung 1 (Lgl1) normalize during recovery. We show that GC (100 nM) stimulates (7- to 115-fold) and VitD (100 microM) suppresses (twofold) Lgl1 expression. RA (all-trans/9-cis, 10 microM) effects are biphasic. From postnatal days 7-10, RA was stimulatory (twofold) at 24 h, after which effects were inhibitory (3- to 15-fold). Lgl1 promoter-luciferase reporter assays confirmed that these agents operated at the transcriptional level. Interestingly, the individual inhibitory effects of VitD and RA on GC induction of Lgl1 were abrogated when both agents were present, suggesting that steric hindrance may influence promoter accessibility. Analysis of the proximity (<50 base pairs) of binding sites for overlapping VitD and RA receptors to that of the GC receptor identified 81% of promoters in 66 genes (including Lgl1) important in human lung development compared with 48% in a random set of 1000 genes. Complex integration of the effects of GC, RA, and VitD on gene expression in the postnatal lung is likely to contribute to the timely advance of alveolarization without attendant inflammation.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation/drug effects , Proteins/metabolism , Pulmonary Alveoli/physiology , Steroids/pharmacology , Tretinoin/pharmacology , Vitamin D/pharmacology , Animals , Binding Sites , Cell Line , Female , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Pregnancy , Promoter Regions, Genetic , Proteins/genetics , Pulmonary Alveoli/cytology , Rats , Rats, Sprague-Dawley , Transcription, Genetic
3.
Respir Res ; 10: 83, 2009 Sep 21.
Article in English | MEDLINE | ID: mdl-19772569

ABSTRACT

BACKGROUND: Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned Lgl1, a developmentally regulated secreted glycoprotein in the lung. In rat, O2 toxicity caused reduced levels of Lgl1, which normalized during recovery. We report here on the generation of an Lgl1 knockout mouse in order to determine whether deficiency of Lgl1 is associated with arrested alveolarization and contributes to neonatal lung injury. METHODS: An Lgl1 knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the Lgl1 gene. To evaluate the pulmonary phenotype of Lgl1+/- mice, we assessed lung morphology, Lgl1 RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL)-4 and IL-13 as markers of inflammation. RESULTS: Absence of Lgl1 was lethal prior to lung formation. Postnatal Lgl1+/- lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of TH2 cytokines (IL-4 and IL-13). At one month of age, reduced expression of Lgl1 was associated with elevated tropoelastin expression and altered pulmonary mechanics. CONCLUSION: Our findings confirm that Lgl1 is essential for viability and is required for developmental processes that precede lung formation. Lgl1+/- mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. Lgl1 haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease.


Subject(s)
Glycoproteins/metabolism , Goblet Cells/metabolism , Immunologic Factors/metabolism , Lung/metabolism , Mice, Knockout/metabolism , Respiratory Mechanics , Animals , Cells, Cultured , Cytokines , Glycoproteins/genetics , Lung Injury , Mice
4.
Pediatr Res ; 59(3): 389-95, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16492977

ABSTRACT

Bronchopulmonary dysplasia (BPD), a major cause of morbidity in premature infants, is characterized by arrest of lung growth and inhibited alveologenesis. We had earlier cloned late-gestation lung 1 (LGL1), a glucocorticoid (GC)-induced, developmentally regulated gene in lung mesenchyme, and showed that reduced levels of late-gestation lung 1 protein (lgl1) inhibit lung branching. Maximal fetal expression of LGL1 is concordant with the onset of alveolar septation, suggesting an additional role for lgl1 in alveologenesis. At postnatal d 7, during the period of maximal septation in postnatal rat lung, lgl1 concentrates at the tips of budding secondary alveolar septa. We studied two models of impaired postnatal alveologenesis generated by exposure of newborn rats to 60% O2 for 2 wk or 95% O2 for 1 wk. A profound decrease of lgl1 expression with oxygen exposure was observed in both animal models. Animals exposed to 95% O2 for 1 wk recovered in air over a 3-wk period, associated with normalization of lgl1 levels. Changes in lung levels of alpha-actin (a marker of myofibroblast differentiation associated with alveologenesis) and the mesenchymal marker vimentin were significant but less marked. Our findings support a role for lgl1 in postnatal lung development. We speculate that deficiency of lgl1 contributes to the arrested alveolar partitioning observed in BPD and that recovery is associated with normalization of lgl1 levels.


Subject(s)
Air , Bronchopulmonary Dysplasia/physiopathology , Lung , Oxygen/toxicity , Proteins/metabolism , Actins/genetics , Actins/metabolism , Animals , Animals, Newborn , Disease Models, Animal , Female , Humans , Infant, Newborn , Lung/anatomy & histology , Lung/growth & development , Lung/metabolism , Lung/pathology , Pregnancy , Proteins/genetics , Rats , Rats, Sprague-Dawley , Vimentin/genetics , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...