Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Inform Decis Mak ; 21(1): 345, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34886852

ABSTRACT

BACKGROUND: Asthma is a chronic disease that exacerbates due to various risk factors, including the patient's biosignals and environmental conditions. It is affecting on average 7% of the world population. Preventing an asthma attack is the main challenge for asthma patients, which requires keeping track of any risk factor that can cause a seizure. Many researchers developed asthma attacks prediction models that used various asthma biosignals and environmental factors. These predictive models can help asthmatic patients predict asthma attacks in advance, and thus preventive measures can be taken. This paper introduces a review of these models to evaluate the used methods, model's performance, and determine the need to improve research in this field. METHOD: A systematic review was conducted for the research articles introducing asthma attack prediction models for children and adults. We searched the PubMed, ScienceDirect, Springer, and IEEE databases from January 2000 to December 2020. The search includes the prediction models that used biosignal, environmental, and both risk factors. The research article's quality was assessed and scored based on two checklists, the Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) and the Critical Appraisal Skills Programme clinical prediction rule checklist (CASP). The highest scored articles were selected to review. RESULT: From 1068 research articles we reviewed, we found that most of the studies used asthma biosignal factors only for prediction, few of the studies used environmental factors, and limited studies used both of these factors. Fifteen different asthma attack predictive models were selected for this review. we found that most of the studies used traditional prediction methods, like Support Vector Machine and regression. We have identified the pros and cons of the reviewed asthma attack prediction models and propose solutions to advance the studies in this field. CONCLUSION: Asthma attack predictive models become more significant when using both patient's biosignal and environmental factors. There is a lack of utilizing advanced machine learning methods, like deep learning techniques. Besides, there is a need to build smart healthcare systems that provide patients with decision-making systems to identify risk and visualize high-risk regions.


Subject(s)
Asthma , Machine Learning , Adult , Asthma/diagnosis , Child , Humans , Risk Factors , Support Vector Machine
2.
Biomed Res Int ; 2018: 5419313, 2018.
Article in English | MEDLINE | ID: mdl-30069472

ABSTRACT

Central-line-associated bloodstream infection (CLABSI) rates are a key quality metric for comparing hospital quality and safety. Manual surveillance systems for CLABSIs are time-consuming and often limited to intensive care units (ICUs). A computer-automated method of CLABSI detection can improve the validity of surveillance. A new web-based, multitiered surveillance system for predicting and reducing CLABSI is proposed. The system has the capability to collect patient-related data from hospital databases and hence predict the patient infection automatically based on knowledge discovery rules and CLABSI decision standard algorithms. In addition, the system has a built-in simulator for generating patients' data records, when needed, offering the capability to train nurses and medical staff for enhancing their qualifications. Applying the proposed system, both CLABSI rates and patient treatment costs can be reduced significantly. The system has many benefits, among which there is the following: it is a web-based system that can collect real patients' data from many IT resources using iPhone, iPad, laptops, Internet, scanners, and hospital databases. These facilities help to collect patients' actual data quickly and safely in electronic format and hence predict CLABSI efficiently. Automation of the patients' data diagnosis process helps in reducing CLABSI detection times. The system is multimedia-based; it uses text, colors, and graphics to enhance patient healthcare report generation and charts. It helps healthcare decision makers to review and approve policies and surveillance plans to reduce and prevent CLABSI.


Subject(s)
Catheter-Related Infections/epidemiology , Internet , Population Surveillance , Catheterization, Central Venous , Child , Cross Infection , Databases, Factual , Female , Forecasting , Hospitals , Humans , Infant, Newborn , Intensive Care Units , Male
3.
Biomed Res Int ; 2017: 3292849, 2017.
Article in English | MEDLINE | ID: mdl-29085836

ABSTRACT

Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections. For our study, we selected datasets of healthcare-associated infections from US National Healthcare Safety Network and consumer survey data from Hospital Consumer Assessment of Healthcare Providers and Systems. Our experiments show that central line-associated blood stream infections (CLABSIs) can be successfully predicted using AdaBoost method with an accuracy up to 89.7%. This will help in implementing effective clinical surveillance programs for infection control, as well as improving the accuracy detection of CLABSIs. Also, this reduces patients' hospital stay cost and maintains patients' safety.


Subject(s)
Catheter-Related Infections/epidemiology , Data Mining/methods , Databases, Factual , Catheter-Related Infections/etiology , Catheter-Related Infections/therapy , Humans , Predictive Value of Tests , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...