Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 125(25): 13770-13779, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34239659

ABSTRACT

Understanding the adsorption and photoactivity of acetic acid and trimethyl acetic acid on TiO2 surfaces is important for improving the performance of photocatalysts and dye-sensitized solar cells. Here we present a structural study of adsorption on rutile TiO2(100)-1 × 1 and -1 × 3 using Scanning Tunnelling Microscopy and Density Functional Theory calculations. Exposure of both terminations to acetic acid gives rise to a ×2 periodicity in the [001] direction (i.e., along Ti rows), with a majority ordered c(2 × 2) phase in the case of the 1 × 1 termination. The DFT calculations suggest that the preference of c(2 × 2) over the 2 × 1 periodicity found for TiO2(110)-1 × 1 can be attributed to an increase in interadsorbate Coulomb repulsion. Exposure of TiO2(100)-1 × 1 and -1 × 3 to trimethyl acetic acid gives rise to largely disordered structures due to steric effects, with quasi-order occurring in small areas and near step edges where these effects are reduced.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 830-838, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-32830762

ABSTRACT

The surface structure of fluoroapatite (0001) (FAp0001) under quasi-dry and humid conditions has been probed with surface X-ray diffraction (SXRD). Lateral and perpendicular atomic relaxations corresponding to the FAp0001 termination before and after H2O exposure and the location of the adsorbed water molecules have been determined from experimental analysis of the crystal truncation rod (CTR) intensities. The surface under dry conditions exhibits a bulk termination with relaxations in the outermost atomic layers. The hydrated surface is formed by a disordered partially occupied H2O layer containing one water molecule (33% surface coverage) adsorbed at each of the three surface Ca atoms, and is coupled with one OH group randomly bonded to each of the three topmost P atoms with a 33% surface coverage.

3.
J Phys Chem Lett ; 9(11): 3131-3136, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29768922

ABSTRACT

Elucidating the structure of the interface between natural (reduced) anatase TiO2 (101) and water is an essential step toward understanding the associated photoassisted water splitting mechanism. Here we present surface X-ray diffraction results for the room temperature interface with ultrathin and bulk water, which we explain by reference to density functional theory calculations. We find that both interfaces contain a 25:75 mixture of molecular H2O and terminal OH bound to titanium atoms along with bridging OH species in the contact layer. This is in complete contrast to the inert character of room temperature anatase TiO2 (101) in ultrahigh vacuum. A key difference between the ultrathin and bulk water interfaces is that in the latter water in the second layer is also ordered. These molecules are hydrogen bonded to the contact layer, modifying the bond angles.

4.
J Phys Chem B ; 122(2): 834-839, 2018 01 18.
Article in English | MEDLINE | ID: mdl-28991476

ABSTRACT

Titanium dioxide is a promising candidate for photocatalytic H2 fuel production, and understanding water splitting on TiO2 surfaces is vital toward explaining and improving the generation of H2. In this work, we electron irradiate anatase TiO2(101) at room temperature to create metastable surface oxygen vacancies in order to investigate their ability to dissociate H2O. Our scanning tunneling microscopy investigations suggest that the surface oxygen vacancies can dissociate H2O by forming bridging OH species. This claim is supported by theoretical calculations from the literature and our previously published spectroscopic measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...