Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; : 37028241258111, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881027

ABSTRACT

Near-infrared (NIR) dyes have a unique ability to interact favorably with light in the NIR region, which is particularly interesting where stealth and camouflage are paramount, such as in military uniforms. Characterization of cotton fabric dyed with NIR-absorbing dyes using visible-NIR (Vis-NIR) and short-wave infrared (SWIR) hyperspectral imaging was done. The aim of the study was to discern spectral changes caused by variations in dye concentration and dyeing temperature as these parameters directly influence color- and crocking-fastness of fabrics impacting the camouflage effect. The fabric was dyed at three concentrations (2.5, 5, and 10%) and two dyeing temperatures (55 °C and 85 °C) and principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed on the spectra to discriminate the fabrics based on dye concentrations. The PCA models successfully segregated the fabrics based on the dye concentration and dyeing temperature, while PLS-DA models demonstrated classification accuracies between 75 and 100% in the Vis-NIR range. Spectra in the SWIR region could not be used to detect the differences in the concentrations of the NIR dyes. This finding is promising, as it aligns with the objective of creating NIR-dyed camouflage fabrics that remain indistinguishable under varying dye concentrations. These results open possibilities for further exploration in enhancing the stealth capabilities of textiles in military applications.

2.
Food Bioproc Tech ; : 1-12, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37363378

ABSTRACT

The metabolic actions of storage fungi and other microorganisms can cause spoilage and post-harvest losses in agricultural commodities, including flaxseed. These microbial contaminants are oxidized with hydroxyl radicals that are efficiently generated when ozone, hydrogen peroxide (H2O2) and ultraviolet (UV) light react in an advanced oxidative process (AOP). The present work explores what we believe is the first application of an AOP technology to reduce mould on whole brown and yellow flaxseed. The impact of AOP on storage and quality parameters was assessed by measuring the fatty acid value (FAV), germination rate, moisture content (MC) and visible mould growth after 12 weeks of storage at 30°C and 75% relative humidity (RH). Under these conditions, the yellow decontaminated flaxseed showed a 31% decrease in the number of seeds with visible mould without any adverse effect on germination rate, FAV and MC. In contrast, the same AOP treatment created an insignificant decrease in mould in stored brown flaxseed, at the cost of decreasing the germination rate and increasing FAV. The adverse effects of AOP on brown flaxseed were not readily apparent but became measurable after storage. Moreover, Fourier transform infrared (FTIR) spectroscopy was utilized to explore the rationale behind the different reactions of flaxseed varieties to AOP. The corresponding results indicated that the tolerance of yellow flaxseed to AOP might be related to its richness in olefins. The authors believe that technologies that harness advanced oxidative processes open new horizons in decontamination beyond ozone alone and towards increasing the shelf life of various agri-food products.

3.
Compr Rev Food Sci Food Saf ; 22(4): 2495-2522, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37078119

ABSTRACT

With the growing global population, the need for food is expected to grow tremendously in the next few decades. One of the key tools to address such growing food demand is minimizing grain losses and optimizing food processing operations. Hence, several research studies are underway to reduce grain losses/degradation at the farm (upon harvest) and later during the milling and baking processes. However, less attention has been paid to changes in grain quality between harvest and milling. This paper aims to address this knowledge gap and discusses possible strategies for preserving grain quality (for Canadian wheat in particular) during unit operations at primary, process, or terminal elevators. To this end, the importance of wheat flour quality metrics is briefly described, followed by a discussion on the effect of grain properties on such quality parameters. This work also explores how drying, storage, blending, and cleaning, as some of the common post-harvest unit operations, could affect grain's end-product quality. Finally, an overview of the available techniques for grain quality monitoring is provided, followed by a discussion on existing gaps and potential solutions for quality traceability throughout the wheat supply chain.


Subject(s)
Flour , Triticum , Canada , Edible Grain , Flour/analysis , Food Handling/methods
4.
Foods ; 13(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201149

ABSTRACT

The high demand for flax as a nutritious edible oil source combined with increasingly restrictive import regulations for oilseeds mandates the exploration of novel quantity and quality assessment methods. One pervasive issue that compromises the viability of flaxseeds is the mechanical damage to the seeds during harvest and post-harvest handling. Currently, mechanical damage in flax is assessed via visual inspection, a time-consuming, subjective, and insufficiently precise process. This study explores the potential of hyperspectral imaging (HSI) combined with chemometrics as a novel, rapid, and non-destructive method to characterize mechanical damage in flaxseeds and assess how mechanical stresses impact the germination of seeds. Flaxseed samples at three different moisture contents (MCs) (6%, 8%, and 11.5%) were subjected to four levels of mechanical stresses (0 mJ (i.e., control), 2 mJ, 4 mJ, and 6 mJ), followed by germination tests. Herein, we acquired hyperspectral images across visible to near-infrared (Vis-NIR) (450-1100 nm) and short-wave infrared (SWIR) (1000-2500 nm) ranges and used principal component analysis (PCA) for data exploration. Subsequently, mean spectra from the samples were used to develop partial least squares-discriminant analysis (PLS-DA) models utilizing key wavelengths to classify flaxseeds based on the extent of mechanical damage. The models developed using Vis-NIR and SWIR wavelengths demonstrated promising performance, achieving precision and recall rates >85% and overall accuracies of 90.70% and 93.18%, respectively. Partial least squares regression (PLSR) models were developed to predict germinability, resulting in R2-values of 0.78 and 0.82 for Vis-NIR and SWIR ranges, respectively. The study showed that HSI could be a potential alternative to conventional methods for fast, non-destructive, and reliable assessment of mechanical damage in flaxseeds.

5.
Foods ; 11(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36496712

ABSTRACT

Manual harvesting of coconuts is a highly risky and skill-demanding operation, and the population of people involved in coconut tree climbing has been steadily decreasing. Hence, with the evolution of tree-climbing robots and robotic end-effectors, the development of autonomous coconut harvesters with the help of machine vision technologies is of great interest to farmers. However, coconuts are very hard and experience high occlusions on the tree. Hence, accurate detection of coconut clusters based on their occlusion condition is necessary to plan the motion of the robotic end-effector. This study proposes a deep learning-based object detection Faster Regional-Convolutional Neural Network (Faster R-CNN) model to detect coconut clusters as non-occluded and leaf-occluded bunches. To improve identification accuracy, an attention mechanism was introduced into the Faster R-CNN model. The image dataset was acquired from a commercial coconut plantation during daylight under natural lighting conditions using a handheld digital single-lens reflex camera. The proposed model was trained, validated, and tested on 900 manually acquired and augmented images of tree crowns under different illumination conditions, backgrounds, and coconut varieties. On the test dataset, the overall mean average precision (mAP) and weighted mean intersection over union (wmIoU) attained by the model were 0.886 and 0.827, respectively, with average precision for detecting non-occluded and leaf-occluded coconut clusters as 0.912 and 0.883, respectively. The encouraging results provide the base to develop a complete vision system to determine the harvesting strategy and locate the cutting position on the coconut cluster.

6.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236233

ABSTRACT

Rapid, non-destructive, and smart assessment of the maturity levels of fruit facilitates their harvesting and handling operations throughout the supply chain. Recent studies have introduced machine vision systems as a promising candidate for non-destructive evaluations of the ripeness levels of various agricultural and forest products. However, the reported models have been fruit-specific and cannot be applied to other fruit. In this regard, the current study aims to evaluate the feasibility of estimating the ripeness levels of wild pistachio fruit using image processing and artificial intelligence techniques. Images of wild pistachios at four ripeness levels were recorded using a digital camera, and 285 color and texture features were extracted from 160 samples. Using the quadratic sequential feature selection method, 16 efficient features were identified and used to estimate the maturity levels of samples. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and an artificial neural network (ANN) were employed to classify samples into four ripeness levels, including initial unripe, secondary unripe, ripe, and overripe. The developed machine vision system achieved a correct classification rate (CCR) of 93.75, 97.5, and 100%, respectively. The high accuracy of the developed models confirms the capability of the low-cost visible imaging system in assessing the ripeness of wild pistachios in a non-destructive, automated, and rapid manner.


Subject(s)
Pistacia , Artificial Intelligence , Discriminant Analysis , Fruit , Neural Networks, Computer
7.
Caspian J Intern Med ; 4(3): 722-6, 2013.
Article in English | MEDLINE | ID: mdl-24009968

ABSTRACT

BACKGROUND: Although infectious diseases are the most common sources for the fever of unknown origin (FUO), but the spectrum of infectious diseases is changing overtime. The purpose of the study was to define the clinical spectrum and changing the pattern of FUO. METHODS: This existing data based study was undertaken from 2007 to 2011. One hundred-six patients fulfilling the modified criteria for FUO referred in a teaching hospital in Ahvaz were enrolled for analysis. The data extracted from the patient's medical files and etiologic agents caused FUO to be assessed. RESULTS: Infections were the most common cause of FUO in 48.4% of the patients. Among the infections, the most important causes of FUO were represented by extra-pulmonary tuberculosis 15 (31.9%), osteomyelitis 10 (21.3%) and abdominal abscesses 6 (12.8%). CONCLUSION: The pattern of FUO in the region is thought to be changed to extra pulmonary TB and osteomyelitis. Tuberculosis is still the leading cause of FUO in our region.

SELECTION OF CITATIONS
SEARCH DETAIL
...