Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Neuroimage ; 251: 118984, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35149230

ABSTRACT

Glutamate is the amino acid with the highest cerebral concentration. It plays a central role in brain metabolism. It is also the principal excitatory neurotransmitter in the brain and is involved in multiple cognitive functions. Alterations of the glutamatergic system may contribute to the pathophysiology of many neurological disorders. For example, changes of glutamate availability are reported in rodents and humans during Alzheimer's and Huntington's diseases, epilepsy as well as during aging. Most studies evaluating cerebral glutamate have used invasive or spectroscopy approaches focusing on specific brain areas. Chemical Exchange Saturation Transfer imaging of glutamate (gluCEST) is a recently developed imaging technique that can be used to study relative changes in glutamate distribution in the entire brain with higher sensitivity and at higher resolution than previous techniques. It thus has strong potential clinical applications to assess glutamate changes in the brain. High field is a key condition to perform gluCEST images with a meaningful signal to noise ratio. Thus, even if some studies started to evaluate gluCEST in humans, most studies focused on rodent models that can be imaged at high magnetic field. In particular, systematic characterization of gluCEST contrast distribution throughout the whole brain has never been performed in humans or non-human primates. Here, we characterized for the first time the distribution of the gluCEST contrast in the whole brain and in large-scale networks of mouse lemur primates at 11.7 Tesla. Because of its small size, this primate can be imaged in high magnetic field systems. It is widely studied as a model of cerebral aging or Alzheimer's disease. We observed high gluCEST contrast in cerebral regions such as the nucleus accumbens, septum, basal forebrain, cortical areas 24 and 25. Age-related alterations of this biomarker were detected in the nucleus accumbens, septum, basal forebrain, globus pallidus, hypophysis, cortical areas 24, 21, 6 and in olfactory bulbs. An age-related gluCEST contrast decrease was also detected in specific neuronal networks, such as fronto-temporal and evaluative limbic networks. These results outline regional differences of gluCEST contrast and strengthen its potential to provide new biomarkers of cerebral function in primates.


Subject(s)
Glutamic Acid , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain Mapping , Glutamic Acid/metabolism , Humans , Magnetic Resonance Imaging/methods , Primates
2.
Neuroimage ; 226: 117589, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33248260

ABSTRACT

Measures of resting-state functional connectivity allow the description of neuronal networks in humans and provide a window on brain function in normal and pathological conditions. Characterizing neuronal networks in animals is complementary to studies in humans to understand how evolution has modelled network architecture. The mouse lemur (Microcebus murinus) is one of the smallest and more phylogenetically distant primates as compared to humans. Characterizing the functional organization of its brain is critical for scientists studying this primate as well as to add a link for comparative animal studies. Here, we created the first functional atlas of mouse lemur brain and describe for the first time its cerebral networks. They were classified as two primary cortical networks (somato-motor and visual), two high-level cortical networks (fronto-parietal and fronto-temporal) and two limbic networks (sensory-limbic and evaluative-limbic). Comparison of mouse lemur and human networks revealed similarities between mouse lemur high-level cortical networks and human networks as the dorsal attentional (DAN), executive control (ECN), and default-mode networks (DMN). These networks were however not homologous, possibly reflecting differential organization of high-level networks. Finally, cerebral hubs were evaluated. They were grouped along an antero-posterior axis in lemurs while they were split into parietal and frontal clusters in humans.


Subject(s)
Atlases as Topic , Brain/diagnostic imaging , Cheirogaleidae , Default Mode Network/diagnostic imaging , Adult , Animals , Attention/physiology , Brain/physiology , Default Mode Network/physiology , Executive Function/physiology , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Rest
3.
Front Neuroinform ; 14: 24, 2020.
Article in English | MEDLINE | ID: mdl-32547380

ABSTRACT

Small-mammal neuroimaging offers incredible opportunities to investigate structural and functional aspects of the brain. Many tools have been developed in the last decade to analyse small animal data, but current softwares are less mature than the available tools that process human brain data. The Python package Sammba-MRI (SmAll-MaMmal BrAin MRI in Python; http://sammba-mri.github.io) allows flexible and efficient use of existing methods and enables fluent scriptable analysis workflows, from raw data conversion to multimodal processing.

4.
Neuroimage ; 205: 116278, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31614221

ABSTRACT

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Subject(s)
Brain/physiology , Connectome/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Animals , Brain/diagnostic imaging , Connectome/standards , Female , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Mice , Mice, Inbred C57BL , Nerve Net/diagnostic imaging , Reproducibility of Results
5.
Neuroimage ; 185: 85-95, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30326295

ABSTRACT

The gray mouse lemur (Microcebus murinus) is a small prosimian of growing interest for studies of primate biology and evolution, and notably as a model organism of brain aging. As brain atlases are essential tools for brain investigation, the objective of the current work was to create the first 3D digital atlas of the mouse lemur brain. For this, a template image was constructed from in vivo magnetic resonance imaging (MRI) data of 34 animals. This template was then manually segmented into 40 cortical, 74 subcortical and 6 cerebro-spinal fluid (CSF) regions. Additionally, we generated probability maps of gray matter, white matter and CSF. The template, manual segmentation and probability maps, as well as imaging tools used to create and manipulate the template, can all be freely downloaded. The atlas was first used to automatically assess regional age-associated cerebral atrophy in a cohort of mouse lemurs previously studied by voxel based morphometry (VBM). Results based on the atlas were in good agreement with the VBM ones, showing age-associated atrophy in the same brain regions such as the insular, parietal or occipital cortices as well as the thalamus or hypothalamus. The atlas was also used as a tool for comparative neuroanatomy. To begin with, we compared measurements of brain regions in our MRI data with histology-based measures from a reference article largely used in previous comparative neuroanatomy studies. We found large discrepancies between our MRI-based data and those of the reference histology-based article. Next, regional brain volumes were compared amongst the mouse lemur and several other mammalian species where high quality volumetric MRI brain atlases were available, including rodents (mouse, rat) and primates (marmoset, macaque, and human). Unlike those based on histological atlases, measures from MRI atlases indicated similar cortical to cerebral volume indices in all primates, including in mouse lemurs, and lower values in mice. On the other hand, white matter to cerebral volume index increased from rodents to small primates (mouse lemurs and marmosets) to macaque, reaching their highest values in humans.


Subject(s)
Atlases as Topic , Brain/anatomy & histology , Cheirogaleidae/anatomy & histology , Imaging, Three-Dimensional/methods , Aging , Anatomy, Comparative , Animals , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Male
6.
Data Brief ; 21: 1178-1185, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30456231

ABSTRACT

We present a dataset made of 3D digital brain templates and of an atlas of the gray mouse lemur (Microcebus murinus), a small prosimian primate of growing interest for studies of primate biology and evolution. A template image was constructed from in vivo magnetic resonance imaging (MRI) data of 34 animals. This template was then manually segmented into 40 cortical, 74 subcortical and 6 cerebro-spinal fluid (CSF) regions. Additionally, the dataset contains probability maps of gray matter, white matter and CSF. The template, manual segmentation and probability maps can be downloaded in NIfTI-1 format at https://www.nitrc.org/projects/mouselemuratlas. Further construction and validation details are given in "A 3D population-based brain atlas of the mouse lemur primate with examples of applications in aging studies and comparative anatomy" (Nadkarni et al., 2018) [1], which also presents applications of the atlas such as automatic assessment of regional age-associated cerebral atrophy and comparative neuroanatomy studies.

7.
Neuroimage ; 183: 37-46, 2018 12.
Article in English | MEDLINE | ID: mdl-30053516

ABSTRACT

External information can modify the subjective value of a tasted stimulus, but little is known about neural mechanisms underlying these behavioral modifications. This study used flavored drinks to produce variable degrees of discrepancy between expected and received flavor. During a learning session, 43 healthy young men learned 4 symbol-flavor associations. In a separate session, associations were presented again during an fMRI scan, but half of the trials introduced discrepancy with previously learned associations. Liking ratings of drinks were collected and were analyzed using a linear model to define the degree to which discrepant symbols affected liking ratings of the subjects during the fMRI session. Based on these results, a GLM analysis of fMRI data was conducted to determine neural correlates of observed behavior. Groups of subjects were composed based on their behavior in response to discrepant symbols, and comparison of brain activity between groups showed that activation in the PCC and the caudate nucleus was more potent in those subjects in which liking was not affected by discrepant symbols. These activations were not found in subjects who assimilated unexpected flavors to flavors preceeded by discrepant symbols. Instead, these subjects showed differences in the activity in the parietal operculum. The activity of reward network appears to be related to assimilation of received flavor to expected flavor in response to symbol-flavor discrepancy.


Subject(s)
Association , Brain Mapping/methods , Caudate Nucleus/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Reward , Taste Perception/physiology , Visual Perception/physiology , Adult , Beverages , Caudate Nucleus/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cues , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Young Adult
8.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1169-76, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27030668

ABSTRACT

We tested the hypothesis that, for rats fed a high-fat diet (HFD), a prioritization of maintaining protein intake may increase energy consumption and hence result in obesity, particularly for individuals prone to obesity ("fat sensitive," FS, vs. "fat resistant," FR). Male Wistar rats (n = 80) first received 3 wk of HFD (protein 15%, fat 42%, carbohydrate 42%), under which they were characterized as being FS (n = 18) or FR (n = 20) based on body weight gain. They then continued on the same HFD but in which protein (100%) was available separately from the carbohydrate:fat (50:50%) mixture. Under this second regimen, all rats maintained their previous protein intake, whereas intake of fat and carbohydrate was reduced by 50%. This increased protein intake to 26% and decreased fat intake to 37%. Adiposity gain was prevented in both FR and FS rats, and gain in fat-free mass was increased only in FS rats. At the end of the study, the rats were killed 2 h after ingestion of a protein meal, and their tissues and organs were collected for analysis of body composition and measurement of mRNA levels in the liver, adipose tissue, arcuate nucleus, and nucleus accumbens. FS rats had a higher expression of genes encoding enzymes involved in lipogenesis in the liver and white adipose tissue. These results show that FS rats strongly reduced food intake and adiposity gain through macronutrient selection, despite maintenance of a relatively high-fat intake and overexpression of genes favoring lipogenesis.


Subject(s)
Adiposity , Diet, High-Fat , Dietary Carbohydrates/metabolism , Dietary Fats/metabolism , Dietary Proteins/metabolism , Energy Intake , Obesity/physiopathology , Animals , Male , Rats , Rats, Wistar
9.
Front Nutr ; 2: 22, 2015.
Article in English | MEDLINE | ID: mdl-26217667

ABSTRACT

We previously reported that rats prone to obesity exhibit an exaggerated increase in glucose oxidation and an exaggerated decline in lipid oxidation under a low-fat high-carbohydrate (LF/HC) diet. The aim of the present study was to investigate the mechanisms involved in these metabolic dysregulations. After a 1-week adaptation to laboratory conditions, 48 male Wistar rats were fed a LF/HC diet for 3 weeks. During weeks 2 and 3, glucose tolerance tests (GTT), insulin tolerance tests (ITT), and meal tolerance tests (MTT) were performed to evaluate blood glucose, plasma, and insulin. Glucose and lipid oxidation were also assayed during the GTT. At the end of the study, body composition was measured in all the rats, and they were classified as carbohydrate resistant (CR) or carbohydrate sensitive (CS) according to their adiposity. Before sacrifice, 24 of the 48 rats received a calibrated LF/HC meal. Liver, muscle, and intestine tissue samples were taken to measure mRNA expression of key genes involved in glucose, lipid, and protein metabolism. ITT, GTT, and MTT showed that CS rats were neither insulin resistant nor glucose intolerant, but mRNA expression of cholecystokinin (CCK) in the duodenum was higher and that of CPT1, PPARα, and PGC1α in liver were lower than in CR rats. From these results, we make the hypothesis that in CS rats, CCK increased pancreatic secretion, which may favor a quicker absorption of carbohydrates and consequently induces an enhanced inhibition of lipid oxidation in the liver, leading to a progressive accumulation of fat preferentially in visceral deposits. Such a mechanism may explain why CS rats share many characteristics observed in rats fed a high-glycemic index diet.

10.
Appetite ; 90: 160-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25796209

ABSTRACT

Consumption of a product is preceded by an anticipation of its qualities by the consumer, which can itself modify the consumption experience. Improved knowledge of anticipation would allow better manipulation of it, for example to enhance the acceptance of healthier foods. According to the Assimilation-Contrast theory, the size of anticipation-reality divergence determines how anticipation influences consumers' satisfaction. For small divergences, experienced pleasure is the same as the anticipated pleasure (Assimilation); for large ones, the effect of surprise provokes an even larger discordance with that which was anticipated (Contrast). Few studies have attempted to observe both effects simultaneously, or to consider the anticipation-reality divergence quantitatively rather than qualitatively; these were the study's objectives. A range of 10 flavored drinks was developed to vary progressively in intensity. Ninety healthy young men consumed samples during two separate sessions. In session 1, hedonic and sensory scores of all drinks were recorded during blind tasting. In session 2, three drinks were chosen as references for taste intensity, and associated with neutral symbols that served as labels. Subjects then consumed 36 drink samples, each one bearing a label. For half of the samples drinks did not correspond to labels, creating a range of anticipation-reality divergence. By predicting session 2 scores using linear modeling with session 1 blind ratings as input, it was confirmed that both Assimilation and Contrast effects on hedonic ratings were present (Assimilation (t(89) = 5.645, p < 0.0001) and Contrast (t(89) = 3.186, p = 0.002 or t(89) = 2.494, p = 0.015, depending on the drink-label combination)). This study was the first to position Assimilation and Contrast within a quantitative context using controlled divergence variation rather than products from distinct categories.


Subject(s)
Anticipation, Psychological , Beverages , Consumer Behavior , Food , Pleasure , Taste Perception/physiology , Adult , Humans , Linear Models , Male , Taste/physiology , Young Adult
11.
Physiol Behav ; 140: 44-53, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25484353

ABSTRACT

Intake of sodas has been shown to increase energy intake and to contribute to obesity in humans and in animal models, although the magnitude and importance of these effects are still debated. Moreover, intake of sugar sweetened beverages is often associated with high-fat food consumption in humans. We studied two different accesses to a sucrose-sweetened water (SSW, 12.3%, a concentration similar to that usually found in sugar sweetened beverages) in C57BL/6 mice fed a normal-fat (NF) or a high-fat (HF) diet in a scheduled access (7.5h). NF-fed and HF-fed mice received during 5weeks access to water, to SSW continuously for 7.5h (SSW), or to water plus SSW for 2h (randomly-chosen time slot for only 5 random days/week) (SSW-2h). Mouse preference for SSW was greater in HF-fed mice than NF-fed mice. Continuous SSW access induced weight gain whatever the diet and led to greater caloric intake than mice drinking water in NF-fed mice and in the first three weeks in HF-fed mice. In HF-fed mice, 2h-intermittent access to SSW induced a greater body weight gain than mice drinking water, and led to hyperphagia on the HF diet when SSW was accessible compared to days without SSW 2h-access (leading to greater overall caloric intake), possibly through inactivation of the anorexigenic neuropeptide POMC in the hypothalamus. This was not observed in NF-fed mice, but 2h-intermittent access to SSW stimulated the expression of dopamine, opioid and endocannabinoid receptors in the nucleus accumbens compared to water-access. In conclusion, in mice, a sucrose solution provided 2h-intermittently and a high-fat diet have combined effects on peripheral and central homeostatic systems involved in food intake regulation, a finding which has significant implications for human obesity.


Subject(s)
Diet, High-Fat , Energy Intake/drug effects , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Sucrose/administration & dosage , Sweetening Agents/administration & dosage , Animals , Body Composition/drug effects , Body Weight/drug effects , Brain/anatomy & histology , Brain/metabolism , Cholecystokinin/blood , Drinking Behavior/drug effects , Eating/drug effects , Food Deprivation , Ghrelin/blood , Leptin/blood , Male , Mice , Mice, Inbred C57BL , Peptide YY/blood , Time Factors
12.
Am J Physiol Regul Integr Comp Physiol ; 307(3): R299-309, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24898839

ABSTRACT

Obesity-prone (OP) rodents are used as models of human obesity predisposition. The goal of the present study was to identify preexisting defects in energy expenditure components in OP rats. Two studies were performed. In the first one, male Wistar rats (n = 48) were fed a high-carbohydrate diet (HCD) for 3 wk and then a high-fat diet (HFD) for the next 3 wk. This study showed that adiposity gain under HCD was 2.9-fold larger in carbohydrate-sensitive (CS) than in carbohydrate-resistant (CR) rats, confirming the concept of "carbohydrate-sensitive" rats. Energy expenditure (EE), respiratory quotient (RQ), caloric intake (CI), and locomotor activity measured during HFD identified no differences in EE and RQ between fat-resistant (FR) and fat-sensitive (FS) rats, and indicated that obesity developed in FS rats only as the result of a larger CI not fully compensated by a parallel increase in EE. A specific pattern of spontaneous activity, characterized by reduced activity burst intensity, was identified in FS rats but not in CS ones. This mirrors a previous observation that under HCD, CS but not FS rats, exhibited bursts of activity of reduced intensity. In a second study, rats were fed a HFD for 3 wk, and the components of energy expenditure were examined by indirect calorimetry in 10 FR and 10 FS rats. This study confirmed that a low basal EE, reduced thermic effect of feeding, defective postprandial energy partitioning, or a defective substrate utilization by the working muscle are not involved in the FS phenotype.


Subject(s)
Dietary Carbohydrates/pharmacology , Dietary Fats/pharmacology , Eating/drug effects , Energy Metabolism/drug effects , Obesity/genetics , Obesity/physiopathology , Animals , Body Composition/drug effects , Body Composition/physiology , Body Weight/drug effects , Body Weight/physiology , Calorimetry, Indirect , Disease Models, Animal , Eating/physiology , Energy Metabolism/physiology , Genetic Predisposition to Disease/genetics , Locomotion/drug effects , Locomotion/physiology , Male , Rats , Rats, Wistar
13.
PLoS One ; 8(7): e68436, 2013.
Article in English | MEDLINE | ID: mdl-23935869

ABSTRACT

BACKGROUND: Sensitivity to obesity is highly variable in humans, and rats fed a high fat diet (HFD) are used as a model of this inhomogeneity. Energy expenditure components (basal metabolism, thermic effect of feeding, activity) and variations in substrate partitioning are possible factors underlying the variability. Unfortunately, in rats as in humans, results have often been inconclusive and measurements usually made after obesity onset, obscuring if metabolism was a cause or consequence. Additionally, the role of high carbohydrate diet (HCD) has seldom been studied. METHODOLOGY/FINDINGS: Rats (n=24) were fed for 3 weeks on HCD and then 3 weeks on HFD. Body composition was tracked by MRI and compared to energy expenditure components measured prior to obesity. RESULTS: 1) under HFD, as expected, by adiposity rats were variable enough to be separable into relatively fat resistant (FR) and sensitive (FS) groups, 2) under HCD, and again by adiposity, rats were also variable enough to be separable into carbohydrate resistant (CR) and sensitive (CS) groups, the normal body weight of CS rats hiding viscerally-biased fat accumulation, 3) HCD adiposity sensitivity was not related to that under HFD, and both HCD and HFD adiposity sensitivities were not related to energy expenditure components (BMR, TEF, activity cost), and 4) only carbohydrate to fat partitioning in response to an HCD test meal was related to HCD-induced adiposity. CONCLUSIONS/SIGNIFICANCE: The rat model of human obesity is based on substantial variance in adiposity gains under HFD (FR/FS model). Here, since we also found this phenomenon under HCD, where it was also linked to an identifiable metabolic difference, we should consider the existence of another model: the carbohydrate resistant (CR) or sensitive (CS) rat. This new model is potentially complementary to the FR/FS model due to relatively greater visceral fat accumulation on a low fat high carbohydrate diet.


Subject(s)
Carbohydrate Metabolism , Obesity/metabolism , Adiposity , Animals , Body Composition , Body Weight , Diet , Diet, High-Fat , Dietary Carbohydrates , Disease Models, Animal , Energy Intake , Energy Metabolism , Male , Rats
14.
J Nutr ; 142(11): 2033-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23054308

ABSTRACT

This study focused on the fate of the satiating potency of dietary fibers when solubilized in a fat-containing medium. Fourteen percent of either guar gum (GG) or fructo-oligosaccharide (FOS) or a mixture of the 2 (GG-FOS, 5% GG and 9% FOS) were solubilized in water or an oil emulsion (18-21% rapeseed oil in water, v:v) and administered by gavage to mice before their food intake was monitored. When compared with water (control), only GG-FOS solubilized in water or in the oil emulsion reduced daily energy intake by 21.1 and 14.1%, respectively. To further describe this effect, the meal pattern was characterized and showed that GG-FOS increased satiation without affecting satiety by diminishing the size and duration of meals for up to 9 h after administration independently of the solubilization medium. The peripheral blockade of gut peptide receptors showed that these effects were dependent on the peripheral signaling of cholecystokinin but not of glucagon-like peptide 1, suggesting that anorectic signals emerge from the upper intestine rather than from distal segments. Measurements of neuronal activation in the nucleus of solitary tract supported the hypothesis of vagal satiation signaling because a 3-fold increase in c-Fos protein expression was observed in that nucleus after the administration of GG-FOS, independently of the solubilization medium. Taken together, these data suggest that a mixture of GG and FOS can maintain its appetite suppressant effect in fatty media. Adding these dietary fibers to fat-containing foods might therefore be useful in managing food intake.


Subject(s)
Cholecystokinin/metabolism , Galactans/pharmacology , Mannans/pharmacology , Oligosaccharides/pharmacology , Plant Gums/pharmacology , Satiety Response/drug effects , Signal Transduction/drug effects , Vagus Nerve/physiology , Animals , Dietary Fiber/analysis , Dietary Fiber/pharmacology , Eating/drug effects , Galactans/chemistry , Male , Mannans/chemistry , Mice , Mice, Inbred C57BL , Oils , Oligosaccharides/chemistry , Plant Gums/chemistry , Vagus Nerve/drug effects , Water
15.
Am J Physiol Regul Integr Comp Physiol ; 303(5): R459-76, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22718809

ABSTRACT

In this article, we review some fundamentals of indirect calorimetry in mice and rats, and open the discussion on several debated aspects of the configuration and tuning of indirect calorimeters. On the particularly contested issue of adjustment of energy expenditure values for body size and body composition, we discuss several of the most used methods and their results when tested on a previously published set of data. We conclude that neither body weight (BW), exponents of BW, nor lean body mass (LBM) are sufficient. The best method involves fitting both LBM and fat mass (FM) as independent variables; for low sample sizes, the model LBM + 0.2 FM can be very effective. We also question the common calorimetry design that consists of measuring respiratory exchanges under free-feeding conditions in several cages simultaneously. This imposes large intervals between measures, and generally limits data analysis to mean 24 h or day-night values of energy expenditure. These are then generally compared with energy intake. However, we consider that, among other limitations, the measurements of Vo(2), Vco(2), and food intake are not precise enough to allow calculation of energy balance in the small 2-5% range that can induce significant long-term alterations of energy balance. In contrast, we suggest that it is necessary to work under conditions in which temperature is set at thermoneutrality, food intake totally controlled, activity precisely measured, and data acquisition performed at very high frequency to give access to the part of the respiratory exchanges that are due to activity. In these conditions, it is possible to quantify basal energy expenditure, energy expenditure associated with muscular work, and response to feeding or to any other metabolic challenge. This reveals defects in the control of energy metabolism that cannot be observed from measurements of total energy expenditure in free feeding individuals.


Subject(s)
Calorimetry, Indirect/methods , Energy Metabolism/physiology , Mice/physiology , Rats/physiology , Animals , Animals, Laboratory , Body Composition/physiology , Body Weight/physiology , Eating/physiology , Respiration
16.
Nutr Res Rev ; 25(1): 29-39, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22643031

ABSTRACT

The present review summarises current knowledge and recent findings on the modulation of appetite by dietary protein, via both peripheral and central mechanisms. Of the three macronutrients, proteins are recognised as the strongest inhibitor of food intake. The well-recognised poor palatability of proteins is not the principal mechanism explaining the decrease in high-protein (HP) diet intake. Consumption of a HP diet does not induce conditioned food aversion, but rather experience-enhanced satiety. Amino acid consumption is detected by multiple and redundant mechanisms originating from visceral (during digestion) and metabolic (inter-prandial period) sources, recorded both directly and indirectly (mainly vagus-mediated) by the central nervous system (CNS). Peripherally, the satiating effect of dietary proteins appears to be mediated by anorexigenic gut peptides, principally cholecystokinin, glucagon-like peptide-1 and peptide YY. In the CNS, HP diets trigger the activation of noradrenergic and adrenergic neurons in the nucleus of the solitary tract and melanocortin neurons in the arcuate nucleus. Additionally, there is evidence that circulating leucine levels may modulate food intake. Leucine is associated with neural mechanisms involving mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), energy sensors active in the control of energy intake, at least in the arcuate nucleus of the hypothalamus. In addition, HP diets inhibit the activation of opioid and GABAergic neurons in the nucleus accumbens, and thus inhibit food intake by reducing the hedonic response to food, presumably because of their low palatability. Future studies should concentrate on studying the adaptation of different neural circuits following the ingestion of protein diets.


Subject(s)
Amino Acids/pharmacology , Appetite Regulation/drug effects , Brain/drug effects , Diet , Dietary Proteins/pharmacology , Energy Intake/drug effects , Feeding Behavior/drug effects , Appetite Regulation/physiology , Brain/physiology , Central Nervous System/drug effects , Central Nervous System/physiology , Energy Intake/physiology , Feeding Behavior/physiology , Gastrointestinal Hormones/metabolism , Humans , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Satiety Response/drug effects , Sensation/drug effects , Taste
17.
Mol Med ; 18: 606-17, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22398685

ABSTRACT

Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.


Subject(s)
Mice , Models, Animal , Stress, Psychological , Animals , Behavior, Animal , Body Composition , Body Weight , Corticosterone/biosynthesis , Disease Models, Animal , Energy Intake , Environment , Male , Mice, Inbred BALB C , Peptide Hormones/blood , Physical Conditioning, Animal
18.
Obesity (Silver Spring) ; 20(5): 1016-23, 2012 May.
Article in English | MEDLINE | ID: mdl-22322344

ABSTRACT

Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In). We hypothesize that supplementation with this fermentable carbohydrate will not only lead to changes in body weight and composition, but also to modulation in neuronal activation in the hypothalamus. Male C57BL/6 mice were maintained on a normal chow diet (control) or a high fat (HF) diet supplemented with either oligofructose-enriched In or corn starch (Cs) for 9 weeks. Compared to HF+Cs diet, In supplementation led to significant reduction in average daily weight gain (mean ± s.e.m.: 0.19 ± 0.01 g vs. 0.26 ± 0.02 g, P < 0.01), total body adiposity (24.9 ± 1.2% vs. 30.7 ± 1.4%, P < 0.01), and lowered liver fat content (11.7 ± 1.7% vs. 23.8 ± 3.4%, P < 0.01). Significant changes were also observed in fecal bacterial distribution, with increases in both Bifidobacteria and Lactobacillius and a significant increase in short chain fatty acids (SCFA). Using manganese-enhanced MRI (MEMRI), we observed a significant increase in neuronal activation within the arcuate nucleus (ARC) of animals that received In supplementation compared to those fed HF+Cs diet. In conclusion, we have demonstrated for the first time, in the same animal, a wide range of beneficial metabolic effects following supplementation of a HF diet with oligofructose-enriched In, as well as significant changes in hypothalamic neuronal activity.


Subject(s)
Appetite Regulation/drug effects , Dietary Carbohydrates/pharmacology , Dietary Supplements , Hypothalamus/physiopathology , Inulin/pharmacology , Obesity/physiopathology , Weight Loss , Animal Feed , Animals , Fermentation , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/diet therapy , Obesity/metabolism , Signal Transduction
19.
Front Physiol ; 2: 96, 2011.
Article in English | MEDLINE | ID: mdl-22203804

ABSTRACT

Individuals exhibit a great variation in their body weight (BW) gain response to a high fat diet. Identification of predictive factors would enable better directed intervention toward susceptible individuals to treat obesity, and uncover potential mechanisms for treatment targeting. We set out to identify predictive behavioral and metabolic factors in an outbred rat model. 12 rats were analyzed in metabolic cages for a period of 5 days during both high carbohydrate diet (HCD), and transition to a high fat diet (HFD). After a recovery period, rats were given a HFD for 6 days to identify those resistant or sensitive to it according to BW gain. Rats were dissected at the end of the study to analyze body composition. This showed that small differences in final BW hid large variations in adiposity, allowing separation of rats into a second classification (final adiposity). Since these rats had been fed a HCD during most of their life, under which most of the adiposity presumably evolved, we considered this carbohydrate-sensitivity or -resistance. Meal size and meal number were found to be good predictors of sensitivity to a HFD, intensity of motor activity and ingestion speed good predictors of sensitivity to a HCD. Rats that were sensitive to the HCD could be resistant to the HFD and vice versa. This points to four types of individuals (carbohydrate/fat resistant/sensitive) though our sample size inhibited deeper investigation of this. This contributes to the idea that to be "obesity prone" does not necessarily need a HFD, it can also happen under a HCD, and be a hidden adiposity change with stable BW.

20.
Mol Cell Biol ; 26(7): 2583-94, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16537904

ABSTRACT

Nuclear spatial positioning plays an important role in the epigenetic regulation of eukaryotic gene expression. Here we show a role for nuclear spatial positioning in regulating episomal transgenes that are delivered by virus-like particles (VLPs). VLPs mediate the delivery of plasmid DNA (pDNA) to cell nuclei but lack viral factors involved in initiating and regulating transcription. By tracking single fluorescently labeled VLPs, coupled with luciferase reporter gene assays, we found that VLPs transported pDNA to cell nuclei efficiently but transgenes were immediately silenced by the cell. An investigation of the nuclear location of fluorescent VLPs revealed that the pDNAs were positioned next to centromeric heterochromatin. The activation of transcription by providing viral factors or inhibiting histone deacetylase activity resulted in the localization to euchromatin regions. Further, the activation of transcription induced the recruitment of PML nuclear bodies (PML-NBs) to the VLPs. This association did not play a role in regulating transgene expression, but PML protein was necessary for the inhibition of transgene expression with alpha interferon (IFN-alpha). These results support a model whereby cells can prevent foreign gene expression at two levels: by positioning transgenes next to centromeric heterochromatin or, if that is overcome, via the type I IFN response facilitated by PML-NB recruitment.


Subject(s)
Cell Nucleus Structures/metabolism , Centromere/metabolism , DNA/genetics , DNA/immunology , Heterochromatin/metabolism , Animals , COS Cells , Cells, Cultured , Centromere/genetics , Chlorocebus aethiops , Gene Silencing/drug effects , Gene Transfer Techniques , HeLa Cells , Heterochromatin/genetics , Humans , Hydroxamic Acids/pharmacology , Immunity, Cellular , Mice , Plasmids/genetics , Swiss 3T3 Cells , Transcription, Genetic , Transgenes/genetics , Transgenes/immunology , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...