Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; 18(11): e1700390, 2018 06.
Article in English | MEDLINE | ID: mdl-29603667

ABSTRACT

For rational design of therapeutic vaccines, detailed knowledge about target epitopes that are endogenously processed and truly presented on infected or transformed cells is essential. Many potential target epitopes (viral or mutation-derived), are presented at low abundance. Therefore, direct detection of these peptides remains a challenge. This study presents a method for the isolation and LC-MS3 -based targeted detection of low-abundant human leukocyte antigen (HLA) class-I-presented peptides from transformed cells. Human papillomavirus (HPV) was used as a model system, as the HPV oncoproteins E6 and E7 are attractive therapeutic vaccination targets and expressed in all transformed cells, but present at low abundance due to viral immune evasion mechanisms. The presented approach included preselection of target antigen-derived peptides by in silico predictions and in vitro binding assays. The peptide purification process was tailored to minimize contaminants after immunoprecipitation of HLA-peptide complexes, while keeping high isolation yields of low-abundant target peptides. The subsequent targeted LC-MS3 detection allowed for increased sensitivity, which resulted in successful detection of the known HLA-A2-restricted epitope E711-19 and ten additional E7-derived peptides on the surface of HPV16-transformed cells. T-cell reactivity was shown for all the 11 detected peptides in ELISpot assays, which shows that detection by our approach has high predictive value for immunogenicity. The presented strategy is suitable for validating even low-abundant candidate epitopes to be true immunotherapy targets.


Subject(s)
Chromatography, Liquid/methods , Epitopes, T-Lymphocyte/metabolism , Histocompatibility Antigens Class I/metabolism , Papillomaviridae/immunology , Peptide Fragments/analysis , Tandem Mass Spectrometry/methods , Uterine Cervical Neoplasms/metabolism , Epitopes, T-Lymphocyte/immunology , Female , Histocompatibility Antigens Class I/immunology , Humans , Papillomavirus Infections/immunology , Papillomavirus Infections/metabolism , Papillomavirus Infections/virology , Tumor Cells, Cultured , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology
2.
Pancreas ; 46(3): 311-322, 2017 03.
Article in English | MEDLINE | ID: mdl-27846146

ABSTRACT

OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) has been subclassified into 3 molecular subtypes: classical, quasi-mesenchymal, and exocrine-like. These subtypes exhibit differences in patient survival and drug resistance to conventional therapies. The aim of the current study is to identify novel subtype-specific protein biomarkers facilitating subtype stratification of patients with PDAC and novel therapy development. METHODS: A set of 12 human patient-derived primary cell lines was used as a starting material for an advanced label-free proteomics approach leading to the identification of novel cell surface and secreted biomarkers. Cell surface protein identification was achieved by in vitro biotinylation, followed by mass spectrometric analysis of purified biotin-tagged proteins. Proteins secreted into a chemically defined serum-free cell culture medium were analyzed by shotgun proteomics. RESULTS: Of 3288 identified proteins, 2 pan-PDAC (protocadherin-1 and lipocalin-2) and 2 exocrine-like-specific (cadherin-17 and galectin-4) biomarker candidates have been validated. Proximity ligation assay analysis of the 2 exocrine-like biomarkers revealed their co-localization on the surface of exocrine-like cells. CONCLUSIONS: The study reports the identification and validation of novel PDAC biomarkers relevant for the development of patient stratification tools. In addition, cadherin-17 and galectin-4 may serve as targets for bispecific antibodies as novel therapeutics in PDAC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Cadherins/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Galectin 4/metabolism , Humans , Lipocalin-2/metabolism , Mice , Pancreatic Neoplasms/diagnosis , Protocadherins , Reproducibility of Results , Sensitivity and Specificity , Transplantation, Heterologous
3.
J Proteomics ; 141: 57-66, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27113135

ABSTRACT

A promising approach for the development of novel therapeutics with fewer side effects in healthy tissues is the targeted delivery of bioactive molecules directly to the site of disease. Thus, one prerequisite is the identification of a robust, disease-specific, vascular accessible biomarker localized on the surface of diseased cells, in the surrounding extracellular matrix or on newly formed blood vessels. One avenue towards the identification of such biomarkers consists in the enrichment of the vascular accessible surface proteome fraction prior to analysis. This can be achieved by covalent modification of the target proteins with membrane-impermeable ester derivatives of biotin, followed by streptavidin-based affinity capturing. The properties of the respective reagents are determined by the linker between the biotin moiety and the reactive group for protein coupling. In the frame of this study, novel, reactivity-improved peptide-based biotinylation reagents as well as reagents based on highly hydrophilic heparin linkers were synthesized and validated. The comprehensive evaluation of different biotinylation reagent classes with aliphatic, PEGylated, peptide-based and heparin-based linkers on single model protein BSA, HeLa cells as well as perfused kidney tissue revealed that the linker-dependent chemical reactivity is the crucial factor for the design of novel biotinylation reagents for vascular targeting approaches. Significance To obtain a reliable identification and stable quantification of vascular accessible protein targets by means of mass spectrometry, covalent modification with a membrane-impermeable ester derivative of biotin, followed by streptavidin-based affinity capturing, is frequently applied for in vivo or ex vivo biomarker identification studies. Nevertheless, no comprehensive evaluation of different biotinylation reagent classes has been performed so far. Within this study, we systematically evaluated novel peptide- and heparin-based biotinylation reagents as well as established compounds based on aliphatic and PEGylated linkers. We identified the linker-dependant chemical reactivity of biotinylation reagents to be the critical factor for the design of novel reagents with high efficiency. The novel, site-specifically activated peptide-based reagents were found to be efficient compounds for application in mass spectrometry-based discovery of novel vascular-accessible biomarkers.


Subject(s)
Biotinylation/methods , Blood Vessels/metabolism , Drug Design , Proteomics/methods , Animals , Biomarkers/analysis , Biomarkers/metabolism , Humans , Indicators and Reagents/chemical synthesis , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...