Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 84(3): 033102, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23556802

ABSTRACT

We present the first high resolution (10(-3) cm(-1)) interferometric measurements in the 200-750 GHz range using coherent synchrotron radiation, achieved with a low momentum compaction factor. The effect of microbunching on spectra is shown, depending on the bunch current. A high signal-to-noise ratio is reached thanks to an artifact correction system based on a double detection scheme. Combined to the broad emitted spectral range and high flux (up to 10(5) times the incoherent radiation), this study demonstrates that coherent synchrotron radiation can now be used for stability-demanding applications, such as gas-phase studies of unstable molecules.

2.
J Synchrotron Radiat ; 19(Pt 1): 1-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22186638

ABSTRACT

Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 2): 056506, 2002 May.
Article in English | MEDLINE | ID: mdl-12059724

ABSTRACT

Particle motion in storage rings is confined by various aperture limits, the size of which restricts the performance of the ring in terms of injection efficiency, lifetime, etc. Intrabeam scattering makes particles sweep a large portion of the phase space, where their motion may eventually be resonantly or chaotically excited to large amplitudes leading to collision with the vacuum chamber. We report here the studies performed at the Advanced Light Source (ALS) on the on- and off-momentum particle motion that provides a good understanding of these limitations. Using off-momentum simulations and experiments together with frequency map analysis, we could precisely correlate beam loss areas with resonance locations. The very good agreement between simulations and experiments allowed us to provide guidance for avoiding these dangerous areas. This analysis results in predictive improvements of the momentum aperture, which actually led to a lifetime increase of 25% at the ALS for very high bunch charge.

4.
Phys Rev Lett ; 85(3): 558-61, 2000 Jul 17.
Article in English | MEDLINE | ID: mdl-10991339

ABSTRACT

Frequency map analysis was first used for the dynamical study of numerical simulations of physical systems (solar system, galaxies, particle accelerators). Here it is applied directly to the experimental results obtained at the Advanced Light Source. For the first time, the network of coupling resonances is clearly visible in an experiment, in a similar way as in the numerical simulation. Excellent agreement between numerical and experimental results leads us to propose this technique as a tool for improving numerical models and actual behavior of particle accelerators. Moreover, it provides a model-independent diagnostic for the evaluation of the dynamical properties of the beam.

SELECTION OF CITATIONS
SEARCH DETAIL
...