Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 246: 125578, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37379943

ABSTRACT

Here we present the simple green synthesis of chitosan­silver nanocomposite (CS-Ag NC) by employing kiwi fruit juice as reducing agent. The structure, morphology, and composition of CS-Ag NC were determined using characterization techniques such as XRD, SEM-EDX, UV-visible, FT-IR, particle size, and zeta potential. The prepared CS-Ag nanocomposite was effectively used as catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 as reductant, in aqueous medium at room temperature. The toxicity of CS-Ag NC was assessed on Normal (L929) cell line, Lung cancer (A549) cell line and Oral cancer (KB-3-1) cell line and their respective IC50values observed were 83.52 µg/mL, 66.74 µg/mL and 75.11 µg/mL. The CS-Ag NC displayed significant cytotoxic activity and the cell viability percentage for normal, lung and oral cancer cell lines were found to be 42.87 ± 0.0060, 31.28 ± 0.0045 and 35.90 ± 0.0065 respectively. Stronger cell migration was exemplified by CS-Ag NC and the percentage of wound closure (97.92%) was substantially identical to that of the standard drug ascorbic acid (99.27%). Further CS-Ag nanocomposite was subjected for in vitro antioxidant activity.


Subject(s)
Chitosan , Metal Nanoparticles , Mouth Neoplasms , Nanocomposites , Humans , Antioxidants/pharmacology , Chitosan/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Wound Healing , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry
2.
Bioorg Chem ; 130: 106235, 2023 01.
Article in English | MEDLINE | ID: mdl-36375354

ABSTRACT

Thiazolidinedione (TZD) based medications have demonstrated to enhance the insulin sensitivity control, hyperglycemia, and lipid metabolism in patients with type 2 diabetes. Hence, in this study, a new series of novel coumarin-4-yl-1,2,3-triazol-4-yl-methyl-thiazolidine-2,4-diones (TZD1-TZD18) were synthesized via copper (I)-catalyzed azide-alkyne cycloaddition "Click Chemistry". The synthesized compounds were evaluated for their glucose uptake assay and in vitro cytotoxicity against HEK-293 (human embryonic kidney) cells which were compared with the standard drug Pioglitazone. Further, molecular docking analysis of these compounds was carried out to explain the in vitro results with PPARγ (PDB ID: 3CS8) and to better understand the bonding interactions with the target protein. The outcomes of in vitro assessment, molecular docking, and pharmacokinetics of the title compounds were revealed to be highly correlated. Interestingly, the compounds TZD4, TZD10, TZD14 and TZD16 were most efficient in lowering the blood glucose level compared with standard drug.


Subject(s)
Coumarins , Diabetes Mellitus, Type 2 , Humans , Coumarins/chemistry , Coumarins/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , HEK293 Cells , Molecular Docking Simulation , Thiazolidines/chemistry , Thiazolidines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...