Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chim Acta ; 543: 117326, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37011867

ABSTRACT

BACKGROUND: Pretherapeutic screening for dihydropyrimidine dehydrogenase (DPD) deficiency based on the measurement of plasma uracil ([U]) is recommended prior to the administration of fluoropyrimidine-based chemotherapy. Cancer patients frequently have impaired kidney function, but the extent to which kidney function decline impacts [U] levels has not been comprehensively investigated. METHODS: We assessed the relationship between DPD phenotypes and estimated glomerular filtration rate (eGFR) in 1751 patients who benefited on the same day from a screening for DPD deficiency by measuring [U] and [UH2]:[U], and an evaluation of eGFR. The impact of a kidney function decline on [U] levels and [UH2]:[U] ratio was evaluated. RESULTS: We observed that [U] was negatively correlated with eGFR, indicating that [U] levels increase as eGFR declines. For each ml/min of eGFR decrease, [U] value increased in average by 0.035 ng/ml. Using the KDIGO classification of chronic kidney disease (CKD), we observed that [U] values >16 ng/ml (DPD deficiency) were measured in 3.6 % and 4.4 % of stage 1 and 2 CKD (normal-high eGFR, >60 ml/min/1.73 m2) patients, but in 6.7 % of stage 3A CKD patients (45 to 59 ml/min/1.73 m2), 25% of stage 3B CKD patients (30 to 44 ml/min/1.73 m2), 22.7% of stage 4 CKD patients (15 to 29 ml/min/1.73 m2 and 26.7% of stage 5 CKD patients (<15 ml/min/1.73 m2). [UH2]:[U] ratios were not impacted by kidney function. CONCLUSION: DPD phenotyping based on the measurement of plasma [U] in patients with decreased eGFR is associated with an exceedingly high rate of false positives when kidney function decline reaches 45 ml/minute/1.73 m2 of eGFR or lower. In this population, an alternative strategy that remain to be evaluated would be to measure the [UH2]:[U] ratio in addition to [U].


Subject(s)
Dihydropyrimidine Dehydrogenase Deficiency , Neoplasms , Renal Insufficiency, Chronic , Humans , Dihydropyrimidine Dehydrogenase Deficiency/complications , Dihydropyrimidine Dehydrogenase Deficiency/diagnosis , Dihydrouracil Dehydrogenase (NADP)/genetics , Uracil , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/complications , Neoplasms/complications , Glomerular Filtration Rate
2.
Clin Chim Acta ; 534: 115-127, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35870540

ABSTRACT

A sensitive and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of tryptophan (Trp) and ten metabolites of kynurenine pathway, including kynurenine (Kyn), 3-hydroxy-kynurenine (3-HK), kynurenic acid (KA), xanthurenic acid (XA), 3-Hydroxy-anthranilic acid (3-HANA), quinolinic acid (QA), nicotinic acid mononucleotide (NaMN), picolinic acid (Pic), nicotinamide (NAM) and nicotinic acid (NA) in both plasma and urine. This LC-MS/MS method was used to predict the occurrence of acute kidney injury (AKI) in a cohort of patients with cardiac surgery under cardiopulmonary bypass (CPB). Urinary concentrations of Pic, as well as Pic to Trp and Pic to 3-HANA ratios were highly predictive of an AKI episode the week after CPB, indicating that Pic could be a predictive biomarker of AKI. Thus, monitoring the kynurenine pathway activity with this LC-MS/MS method is a clinically relevant tool to identify new biomarkers of kidney injury.


Subject(s)
Acute Kidney Injury , Kynurenine , Acute Kidney Injury/diagnosis , Chromatography, Liquid/methods , Humans , Kynurenine/metabolism , Tandem Mass Spectrometry/methods , Tryptophan/metabolism
3.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-34793337

ABSTRACT

The biosynthetic routes leading to de novo nicotinamide adenine dinucleotide (NAD+) production are involved in acute kidney injury (AKI), with a critical role for quinolinate phosphoribosyl transferase (QPRT), a bottleneck enzyme of de novo NAD+ biosynthesis. The molecular mechanisms determining reduced QPRT in AKI, and the role of impaired NAD+ biosynthesis in the progression to chronic kidney disease (CKD), are unknown. We demonstrate that a high urinary quinolinate-to-tryptophan ratio, an indirect indicator of impaired QPRT activity and reduced de novo NAD+ biosynthesis in the kidney, is a clinically applicable early marker of AKI after cardiac surgery and is predictive of progression to CKD in kidney transplant recipients. We also provide evidence that the endoplasmic reticulum (ER) stress response may impair de novo NAD+ biosynthesis by repressing QPRT transcription. In conclusion, NAD+ biosynthesis impairment is an early event in AKI embedded with the ER stress response, and persistent reduction of QPRT expression is associated with AKI to CKD progression. This finding may lead to identification of noninvasive metabolic biomarkers of kidney injury with prognostic and therapeutic implications.


Subject(s)
Acute Kidney Injury/metabolism , Endoplasmic Reticulum Stress/physiology , Kidney/metabolism , NAD/biosynthesis , Animals , Cell Line , Male , Mice , Mice, Inbred C57BL , Pentosyltransferases/metabolism , Quinolinic Acid/urine , Tryptophan/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...