Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Cell ; 36(1): 15-25, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36251241

ABSTRACT

Impaired reproductive health is a worldwide problem that affects the psychological well-being of a society. Despite the technological developments to treat infertility, the global infertility rate is increasing significantly. Many infertility conditions are currently treated using various advanced clinical approaches such as intrauterine semination (IUI), in vitro fertilization (IVF), and intracytoplasmic injection (ICSI). Nonetheless, clinical management of some conditions such as dysfunctional endometrium, premature ovarian failure, and ovarian physiological aging still pose significant challenges. Stem cells based therapeutic strategies have a long-standing history to treat many infertility conditions, but ethical restrictions do not allow the broad-scale utilization of adult mesenchymal stromal/stem cells (MSCs). Easily accessible, placental derived or amniotic stem cells present an invaluable alternative source of non-immunogenic and non-tumorigenic stem cells that possess multilineage potential. Given these characteristics, placental or amniotic stem cells (ASCs) have been investigated for therapeutic purposes to address infertility in the last decade. This study aims to summarize the current standing and progress of human amniotic epithelial stem cells (hAECs), amniotic mesenchymal stem cells (hAMSCs), and amniotic fluid stem cells (hAFSCs) in the field of reproductive medicine. The therapeutic potential of these cells to restore or enhance normal ovarian function and pregnancy outcomes are highlighted in this study.


Subject(s)
Infertility, Female , Adult , Pregnancy , Female , Humans , Infertility, Female/therapy , Placenta , Regenerative Medicine , Stem Cells , Amnion
2.
Cell Cycle ; 21(15): 1543-1556, 2022 08.
Article in English | MEDLINE | ID: mdl-35412950

ABSTRACT

The successful translation of mesenchymal stem cells (MSCs) from bench to bedside is predicated upon their regenerative capabilities and immunomodulatory potential. Many challenges still exist in making MSCs a viable and cost-effective therapeutic option, due in part to the challenges of sourcing MSCs from adult tissues and inconsistencies in the characterization of MSCs. In many cases, adult MSC collection is an invasive procedure, and ethical concerns and age-related heterogeneity further complicate obtaining adult tissue derived MSCs at the scales needed for clinical applications. Alternative adult sources, such as post-partum associated tissues, offer distinct advantages to overcome these challenges. However, successful therapeutic applications rely on the efficient ex-vivo expansion of the stem cells while avoiding any culture-related phenotypic alterations, which requires optimized and standardized isolation, culture, and cell preservation methods. In this review, we have compared the isolation and culture methods for MSCs originating from the human amniotic membrane (hAMSCs) of the placenta to identify the elements that support the extended subculture potential of hAMSCs without compromising their immune-privileged, pluripotent regenerative potential.Abbreviations: AM: Human amniotic membrane; ASCs: Adipose tissue-derived stem cells; BM-MSCs: Bone marrow-mesenchymal stem cells; DMEM: Dulbecco's modified eagle medium; DT: Doubling time; EMEM: Eagle's modified essential medium; ESCM: Embryonic stem cell markers; ESCs: Embryonic stem cells; hAECs: Human amniotic epithelial cells; hAMSCs: Human amniotic mesenchymal stem cells; HLA: Human leukocyte antigen; HM: Hematopoietic markers; IM: Immunogenicity markers; MHC: Major histocompatibility complex; MSCs: Mesenchymal stem cells; MCSM: Mesenchymal cell surface markers; Nanog: NANOG homeobox; Oct: Octamer binding transcription factor 4; P: Passage; PM: Pluripotency markers; STRO-1: Stromal precursor antigen-1; SCP: Subculture potential; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen.


Subject(s)
Amnion , Mesenchymal Stem Cells , Adipose Tissue , Adult , Cell Differentiation , Cell Proliferation , Cells, Cultured , Embryonic Stem Cells/metabolism , Female , Humans , Mesenchymal Stem Cells/metabolism , Pregnancy , Review Literature as Topic
3.
Cell Cycle ; 21(7): 655-673, 2022 04.
Article in English | MEDLINE | ID: mdl-35289707

ABSTRACT

Human amniotic epithelial cells (hAECs), derived from an epithelial cell layer of the human amniotic membrane, possess embryonic stem-like properties and are known to maintain multilineage differentiation potential. Unfortunately, an inability to expand hAECs without significantly compromising their stem cell potency has precluded their widespread use for regenerative therapies. This article critically evaluates the methods used for isolation, expansion, and cryopreservation of hAECs. We assessed the impact of these methods on ex-vivo expansion and stem cell phenotype of hAECs. Moreover, the progress and challenges to optimize clinically suitable culture conditions for an efficient ex-vivo expansion and storage of these cells are highlighted. Additionally, we also reviewed the currently used hAECs isolation and characterization methods employed in clinical trials. Despite the developments made in the last decade, significant challenges still exist to overcome limitations of ex-vivo expansion and retention of stemness of hAECs in both xenogeneic and xenofree culture conditions. Therefore, optimization and standardization of culture conditions for robust ex-vivo maintenance of hAECs without affecting tissue regenerative properties is an absolute requirement for their successful therapeutic manipulation. This review may help the researchers to optimize the methods that support ex-vivo survival, proliferation, and self-renewal properties of the hAECs.Abbreviations: AM: Human amniotic membrane; CM-HBSS: Ca++ and Mg++ free HBSS; DMEM: Dulbecco's Modified Eagle Medium; DMEM-HG: DMEM-high glucose; EMEM: Eagle's Modified Essential Medium; EMT: Epithelial-to-mesenchymal transition; EpM: Epi-life complete media; ESC: Embryonic stem cells; ESCM: Epithelial cell surface markers; hAECs: Human amniotic epithelial cells; HLA: Human leukocyte antigen; IM: Immunogenicity markers; iPSC: Induced pluripotent stem cells; KOSR; KSR: Knockout serum replacement; KSI: Key success indicators; CHM: Cell heterogeneity markers; Nanog: NANOG homeobox; Oct-4: Octamer binding transcription factor 4; OR: Operation room; P: Passage; PM: Pluripotency markers; SCM: Stem cell markers for non-differentiated cells; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen; UC: Ultra-culture; XF: Xenogeneic free.


Subject(s)
Amnion , Epithelial Cells , Cell Differentiation , Cells, Cultured , Cryopreservation , Epithelial Cells/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...