Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Biofilms Microbiomes ; 9(1): 28, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253749

ABSTRACT

Cecal microbiota plays an essential role in chicken health. However, its contribution to fat metabolism, particularly in abdominal fat deposition, which is a severe problem in the poultry industry, is still unclear. Here, chickens at 1, 4, and 12 months of age with significantly (p < 0.05) higher and lower abdominal fat deposition were selected to elucidate fat metabolism. A significantly (p < 0.05) higher mRNA expression of fat anabolism genes (ACSL1, FADS1, CYP2C45, ACC, and FAS), a significantly (p < 0.05) lower mRNA expression of fat catabolism genes (CPT-1 and PPARα) and fat transport gene APOAI in liver/abdominal fat of high abdominal fat deposition chickens indicated that an unbalanced fat metabolism leads to excessive abdominal fat deposition. Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis were found significantly (p < 0.05) higher in high abdominal fat deposition chickens, while Sphaerochaeta was higher in low abdominal fat deposition chickens. Further, Spearman correlation analysis indicated that the relative abundance of cecal Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis was positively correlated with abdominal fat deposition, yet cecal Sphaerochaeta was negatively correlated with fat deposition. Interestingly, transferring fecal microbiota from adult chickens with low abdominal fat deposition into one-day-old chicks significantly (p < 0.05) decreased Parabacteroides and fat anabolism genes, while markedly increased Sphaerochaeta (p < 0.05) and fat catabolism genes (p < 0.05). Our findings might help to assess the potential mechanism of cecal microbiota regulating fat deposition in chicken production.


Subject(s)
Chickens , Microbiota , Animals , Lipid Metabolism , RNA, Messenger/metabolism , Abdominal Fat/metabolism
3.
Microbiome ; 10(1): 107, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35836252

ABSTRACT

BACKGROUND: Intestinal inflammation is prevalent in chicken, which results in decreased growth performance and considerable economic losses. Accumulated findings established the close relationship between gut microbiota and chicken growth performance. However, whether gut microbiota impacts chicken growth performance by lessening intestinal inflammation remains elusive. RESULTS: Seven-weeks-old male and female chickens with the highest or lowest body weights were significantly different in breast and leg muscle indices and average cross-sectional area of muscle cells. 16S rRNA gene sequencing indicated Gram-positive bacteria, such as Lactobacilli, were the predominant species in high body weight chickens. Conversely, Gram-negative bacteria, such as Comamonas, Acinetobacter, Brucella, Escherichia-Shigella, Thermus, Undibacterium, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were significantly abundant in low body weight chickens. Serum lipopolysaccharide (LPS) level was significantly higher in low body weight chickens (101.58 ± 5.78 ng/mL) compared with high body weight chickens (85.12 ± 4.79 ng/mL). The expression of TLR4, NF-κB, MyD88, and related inflammatory cytokines in the jejunum was significantly upregulated in low body weight chickens, which led to the damage of gut barrier integrity. Furthermore, transferring fecal microbiota from adult chickens with high body weight into 1-day-old chicks reshaped the jejunal microbiota, mitigated inflammatory response, and improved chicken growth performance. CONCLUSIONS: Our findings suggested that jejunal microbiota could affect chicken growth performance by mitigating intestinal inflammation. Video Abstract.


Subject(s)
Chickens , Microbiota , Animals , Body Weight , Female , Inflammation , Jejunum , Male , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
4.
Microb Biotechnol ; 15(3): 844-861, 2022 03.
Article in English | MEDLINE | ID: mdl-34264533

ABSTRACT

It has been established that gut microbiota influences chicken growth performance and fat metabolism. However, whether gut microbiota affects chicken growth performance by regulating fat metabolism remains unclear. Therefore, seven-week-old chickens with high or low body weight were used in the present study. There were significant differences in body weight, breast and leg muscle indices, and cross-sectional area of muscle cells, suggesting different growth performance. The relative abundance of gut microbiota in the caecal contents at the genus level was compared by 16S rRNA gene sequencing. The results of LEfSe indicated that high body weight chickens contained Microbacterium and Sphingomonas more abundantly (P < 0.05). In contrast, low body weight chickens contained Slackia more abundantly (P < 0.05). The results of H & E, qPCR, IHC, WB and blood analysis suggested significantly different fat metabolism level in serum, liver, abdominal adipose, breast and leg muscles between high and low body weight chickens. Spearman correlation analysis revealed that fat metabolism positively correlated with the relative abundance of Microbacterium and Sphingomonas while negatively correlated with the abundance of Slackia. Furthermore, faecal microbiota transplantation was performed, which verified that transferring faecal microbiota from adult chickens with high body weight into one-day-old chickens improved growth performance and fat metabolism in liver by remodelling the gut microbiota. Overall, these results suggested that gut microbiota could affect chicken growth performance by regulating fat metabolism.


Subject(s)
Chickens , Microbiota , Animals , Body Weight , Cecum/microbiology , RNA, Ribosomal, 16S/genetics
5.
Microb Pathog ; 150: 104710, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33383151

ABSTRACT

In poultry industry, male chickens have a better growth performance than female ones under the same genetic background and diet. Emerging evidences proposed an important role of intestinal microbiota in chicken's growth performance. This study aimed to determine gut microbiota related gender based differences in the growth performance of chickens. Therefore, male and female chickens (n = 20) at 7-week age were used to carry out histomorphological, molecular, gene expression analysis with their liver, chest and leg muscle, as well as 16S rRNA sequencing analysis for gut microbiota. The results revealed that Bacteroides and Megamonas genera were more prominently colonized in the cecum of male chickens. The male chicken's cecal microbiota indicated a closer relation with glycan metabolism, while in the female chickens it was more related with lipid metabolism. Gene expression levels associated with glycan and lipid metabolism were different between male and female chickens. Further, using Spearman correlation analysis, we found a positive correlation between glycan and lipid metabolism, and the relative abundance of Bacteroides, Megamona and Lactobacillus in male chickens. Similarly, we also found a positive correlation between the lipid metabolism and the relative abundance of Ruminococcaceae and Enterococcus in female chickens. These findings revealed the association of chicken growth performance with cecal microbiota that contributed to the metabolism of glycan and lipid in a sex-dependent manner.


Subject(s)
Chickens , Microbiota , Animals , Cecum , Female , Male , RNA, Ribosomal, 16S/genetics , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...