Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Sci Total Environ ; 929: 172323, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608906

ABSTRACT

Mycotoxins are secondary metabolites produced by fungi and identified as contaminants in animal feed. They have potentially harmful effects, including carcinogenicity, mutagenicity, and repro-toxicity in animals and humans. As a result of climate change, there is the potential for a change in the prevalence and concentration of mycotoxins in animal feed components. This necessitates an assessment of the present and emerging threats to the food supply chain from mycotoxins. This systematic review and meta-analysis study synthesised studies on mycotoxin contamination and prevalence in cattle feed components. The studies were collected from scientific databases Web of Knowledge, Scopus, and Embase between 2011 and 2022. The meta-analysis synthesised 97 studies on the prevalence and the concentration of aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisin and T-2/HT-2 toxins in feed components. Aflatoxin was highly prevalent (59 %), with a concentration of 2.58-3.92 µg kg-1 in feed components. Ochratoxin A had a global prevalence of 31 % with a concentration of 5.56-12.41 µg kg-1. Deoxynivalenol had a global concentration of 233.17-327.73 µg kg-1 and a prevalence of 74 %. Zearalenone had a prevalence of 70 % and a concentration of 42.47-66.19 µg kg-1. The concentration and prevalence of fumonisins was 232.19-393.07 µg kg-1 and 65 %, respectively. The prevalence and concentration of T-2/HT-2 toxins were 45 % and 23.54-35.12 µg kg-1, respectively. The synthesised concentration of the mycotoxins in the overall feed components was lower than the regulated and guidance values set by the European Union. However, in a few cases, the 95th percentile exceeded these concentration values due to high levels of uncertainty attributed to lower sample size, and thus, need to be considered while conducting risk assessments. The study highlights climates and regions likely to be conducive to the emergence of mycotoxin risk, especially considering the potential influences of climate change.


Subject(s)
Animal Feed , Food Contamination , Mycotoxins , Animal Feed/analysis , Mycotoxins/analysis , Animals , Food Contamination/analysis , Cattle , Aflatoxins/analysis
2.
Environ Res ; 245: 117979, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38142727

ABSTRACT

Mycotoxins are toxic fungal metabolites that may occur in crops. Mycotoxins may carry-over into bovine milk if bovines ingest mycotoxin-contaminated feed. Due to climate change, there may be a potential increase in the prevalence and concentration of mycotoxins in crops. However, the toxicity to humans and the carry-over rate of mycotoxins from feed to milk from bovines varies considerably. This research aimed to rank emerging and existing mycotoxins under different climate change scenarios based on their occurrence in milk and their toxicity to humans. The quantitative risk ranking took a probabilistic approach, using Monte-Carlo simulation to take account of input uncertainties and variabilities. Mycotoxins were ranked based on their hazard quotient, calculated using estimated daily intake and tolerable daily intake values. Four climate change scenarios were assessed, including an Irish baseline model in addition to best-case, worst-case, and most likely scenarios, corresponding to equivalent Intergovernmental Panel on Climate Change (IPCC) scenarios. This research prioritised aflatoxin B1, zearalenone, and T-2 and HT-2 toxin as potential human health hazards for adults and children compared to other mycotoxins under all scenarios. Relatively lower risks were found to be associated with mycophenolic acid, enniatins, and deoxynivalenol. Overall, the carry-over rate of mycotoxins, the milk consumption, and the concentration of mycotoxins in silage, maize, and wheat were found to be the most sensitive parameters (positively correlated) of this probabilistic model. Though climate change may impact mycotoxin prevalence and concentration in crops, the carry-over rate notably affects the final concentration of mycotoxin in milk to a greater extent. The results obtained in this study facilitate the identification of risk reduction measures to limit mycotoxin contamination of dairy products, considering potential climate change influences.


Subject(s)
Mycotoxins , Child , Humans , Animals , Mycotoxins/toxicity , Mycotoxins/analysis , Milk/chemistry , Climate Change , Animal Feed/analysis , Food Contamination/analysis , Crops, Agricultural
3.
Environ Pollut ; 337: 122582, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37739257

ABSTRACT

Evidence suggests that oral exposure to bisphenol A (BPA) may result in adverse metabolic and neurobehavioral effects. The aim of the present meta-analysis is to examine this association based on systematically selected laboratory rodent studies published from 2012 to 2021 and sourced from Scopus, Web of Science, EmBase, and PubMed. Articles satisfying eligibility and inclusion criteria were included for the calculation of the summary standardised mean difference (SMD). Subgroup analysis and subsequent dose-response analysis were conducted if applicable. In total, 32 studies were analysed for 6 metabolic endpoints (cholesterol, triglycerides, insulin, glucose, leptin, and adiponectin) and 6 neurobehavioral endpoints (locomotor activity, exploratory, anxiety, depression, spatial learning and memory, non-spatial learning and memory). Summary SMDs implied that no significant effects were observed in endpoints considered. The dose was not determined as a significant moderator with regards to medium or high heterogeneity; however, there was significant impairment of spatial learning and memory at health-based guidance value ('HBGV') (0.05-9 mg (kg bw)-1 day-1) and 'High' (>9 mg (kg bw)-1 day-1) dose group. As a result, an indicative toxicological reference dose value of 0.034 mg (kg bw)-1 day-1 was proposed due to large variability. Potential harm to spatial learning and memory from BPA exposure requires further investigation. This study has provided some additional information on potential adverse metabolic and neurobehavioral effects of BPA from the perspective of meta-analysis which can inform the public, regulatory authorities, and policymakers.


Subject(s)
Anxiety , Phenols , Phenols/toxicity , Phenols/analysis , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/analysis , Insulin
4.
Sci Total Environ ; 880: 163296, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37030273

ABSTRACT

There is currently a significant global focus from the public health community on addressing climate-related public health issues. Globally we are witnessing geological shifts, extreme weather events, and the associated incidents that may have a significant human health impact. These include unseasonable weather, heavy rainfall, global sea-level rise and flooding, droughts, tornados, hurricanes, and wildfires. Climate change can have a direct and indirect health impact. The global challenge of climate change requires global preparedness for potential human health effects due to climate change, including vigilance for diseases carried by vectors, foodborne and waterborne diseases, deteriorated air quality, heat stress, mental health, and potential disasters. Therefore, it is essential to identify and prioritise the consequences of climate change to become future-ready. This proposed methodological framework aimed to develop an innovative modelling method using the 'Disability-Adjusted Life Year (DALY)', to rank potential direct and indirect human health impacts (communicable and non-communicable diseases) of climate change. This approach aims to ensure food safety, including water, in the wake of climate change. The novelty of the research will come from developing models with spatial mapping (Geographic Information System or GIS), which will also consider the influence of climatic variables, geographical differences in exposure and vulnerability and regulatory control on feed/food quality and abundance, range, growth, and survival of selected microorganisms. In addition, the outcome will identify and assess emerging modelling techniques and computational-efficient tools to overcome current limitations in climate change research on human health and food safety and to understand uncertainty propagation using the Monte Carlo simulation method for future climate change scenarios. It is envisaged that this research work will contribute significantly to developing a lasting network and critical mass on a national scale. It will also provide a template to implement from a core centre of excellence in other jurisdictions.


Subject(s)
Disasters , Noncommunicable Diseases , Humans , Climate Change , Ireland , Noncommunicable Diseases/epidemiology , Public Health
5.
Sci Total Environ ; 881: 163496, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37062312

ABSTRACT

Bisphenol A (BPA) is a chemical with large-scale applications in the manufacturing of industrial products. Concerns have been raised regarding human exposure to BPA and dietary consumption is the main route of exposure. BPA is recognised as an endocrine disruptor with multiple adverse effects on the reproductive, immune, and nervous systems. This study aimed to conduct a probabilistic risk assessment to evaluate the human health risk based on the raw concentration data (N = 1266) of BPA in non-canned meat and meat products purchased from supermarkets and local butchers in Dublin and the surrounding area. The mean exposure levels for BPA in non-canned meat and meat products, fresh meat, and processed meat products among children were 0.019, 0.0022, and 0.015 µg (kg bw)-1 day-1, respectively. Therefore, simulated human exposures to BPA were far below the EFSA recommended current temporary tolerable daily intake (t-TDI) of 4 µg (kg bw)-1 day-1. However recently, the EFSA has proposed a draft TDI of 0.04 ng (kg bw)-1 day-1 to replace the current t-TDI. Hence, our results indicated potential health concerns as the estimated exposure levels (5th-95th percentile) were below current t-TDI but above draft TDIs. Further investigation into the source of BPA contamination in processed meat products is highly recommended. The research presented here will inform the public, meat producers and processors, and policymakers on potential exposure to BPA.


Subject(s)
Meat Products , Child , Humans , Meat/analysis , Diet , Benzhydryl Compounds/analysis , Risk Assessment
6.
Food Chem Toxicol ; 172: 113574, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566970

ABSTRACT

Bisphenol A (BPA) is a widely used synthetic industrial compound frequently detected in food. Dietary exposure to BPA has been recognised as a potential health concern. However, there are uncertainties regarding BPA toxicity. The primary objective of this study was to summarise and analyse multiple toxicity endpoints of adverse reproductive effects caused by BPA exposure in rodent models. Therefore, a multilevel meta-analysis and subsequent dose-response analysis were conducted. Relevant articles published in English between 2012 and 2021 were collected from online databases, viz. Scopus, EmBase, Web of Science, and PubMed. In total, 41 studies were included for statistical analysis. All statistical analyses were performed using open-source RStudio packages. Summary effects indicated the statistical significance of BPA exposure on decreased sperm concentration (Hedges' g: -1.35) and motility (Hedges' g: -1.12) on average, while no significant effects were observed on the absolute and relative weight of male and female reproductive organs. The lowest mean toxicological reference dose values of 0.0011 mg (kg bw)-1 day-1 was proposed for BPA exposure on sperm concentration from the dose-response model. In conclusion, potential health risks from BPA exposure were shown with regards to reproductive toxicity, especially that sperm concentration and sperm motility require further attention.


Subject(s)
Rodentia , Sperm Motility , Animals , Male , Female , Semen , Reproduction , Benzhydryl Compounds/analysis
7.
Sci Total Environ ; 859(Pt 2): 160022, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36368382

ABSTRACT

Antibiotic resistance (AR) development in natural water bodies is a significant source of concern. Macrolide antibiotics in particular have been identified as pollutants of concern for AR development throughout the literature, as well as by state and international authorities. This study utilises a probabilistic model to examine the risk of AR development arising from human-use macrolide residues, utilising administration rates from Ireland as a case study. Stages modelled included level of administration, excretion, degradation in wastewater, removal in wastewater treatment, assuming conventional activated sludge (CAS) treatment, and dilution. Release estimates per day, as well as risk quotient values for antibiotic resistance development and ecological impact, are generated for erythromycin, clarithromycin, and azithromycin. In the modelled scenario in which conventional activated sludge treatment is utilised in wastewater treatment, this model ranks risk of resistance development for each antibiotic in the order clarithromycin > azithromycin > erythromycin, with mean risk quotient values of 0.50, 0.34 and 0.12, respectively. A membrane bioreactor scenario was also modelled, which reduced risk quotient values for all three macrolides by at least 50 %. Risk of ecological impact for each antibiotic was also examined, by comparing environmental concentrations predicted to safety limits based on toxicity data for cyanobacteria and other organisms from the literature, with azithromycin being identified as the macrolide of highest risk. This study compares and quantifies the risk of resistance development and ecological impact for a high-risk antibiotic group in the Irish context, and demonstrates the potential for risk reduction achieved by adoption of alternative (e.g. membrane bioreactor) technology.


Subject(s)
Anti-Bacterial Agents , Macrolides , Humans , Anti-Bacterial Agents/toxicity , Macrolides/toxicity , Azithromycin/toxicity , Clarithromycin , Erythromycin
8.
Sci Total Environ ; 854: 158815, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36115396

ABSTRACT

Bisphenol A (BPA), a synthetic chemical which has raised concerns due to its potential toxicological effects on humans, has been widely detected in canned and non-canned meat and meat products. This study estimated BPA migration from packaging to non-canned and canned meat products by developing two probabilistic models. BPA concentration data in packaging materials were collated, including polyethylene terephthalate, polyvinyl chloride, epoxy-based coatings, and polyester-based coatings. Migration ratios were calculated from migration tests of BPA molecules moving from packaging to food simulants. The predictive model revealed that the BPA migration concentration from packaging ranges from 0.017 to 0.13 (5th-95th percentile) µg kg-1 with a simulated mean of 0.056 µg kg-1 in non-canned meat products. This is in stark contrast to the simulated mean of 134.57 (5th-95th percentile: 59.17-223.25) µg kg-1 for canned meat products. Nevertheless, plastic packaging was estimated to contribute only 3 % of BPA levels in non-canned meat products. The sensitivity analysis showed that the contact area of meat products with films is the most sensitive parameter of the plastic packaging migration model. It is concluded that plastic packaging may not be the only or dominant source of BPA in non-canned meat products.


Subject(s)
Food, Preserved , Meat Products , Humans , Food, Preserved/analysis , Food Contamination/analysis , Benzhydryl Compounds/analysis , Food Packaging
9.
Environ Res ; 213: 113734, 2022 10.
Article in English | MEDLINE | ID: mdl-35750124

ABSTRACT

Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 µg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.


Subject(s)
Meat Products , Benzhydryl Compounds/analysis , Benzhydryl Compounds/toxicity , Body Weight , Food Contamination/analysis , Humans , Phenols , Risk Assessment
10.
Sci Total Environ ; 833: 155149, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421482

ABSTRACT

Bovine mastitis is an infectious disease that causes udder inflammation and is responsible for raw milk losses across European dairy farms. It is associated with reduced cow milk yield and contributes to elevated Somatic Cell Count (SCC) in raw milk. Staphylococcus aureus is one of the most prevalent mastitis pathogens that cause subclinical and clinical mastitis and can be present as a coloniser bacterium in cows. Climate change and geographical variability may influence the prevalence of this pathogen. Thus, this research aimed to predict the raw milk losses in three major dairy-producing regions across Europe (i.e. Mediterranean, Atlantic and Continental) under climate change scenarios. An exposure assessment model and a stepwise probabilistic model were developed to predict potential cow milk yield reduction, S. aureus and SCC concentrations in the bulk tank milk at dairy farms. Baseline (i.e. present) and future climate change scenarios were defined, and the resultant concentrations of SCC and S. aureus were compared to the actual European regulatory limits. Across the three regions, raw milk losses ranged from 1.06% to 2.15% in the baseline. However, they increased up to 3.21% in the climate change scenarios when no on-farm improvements were considered. Regarding geographical variation, the highest potential milk losses were reported for the Mediterranean and the lowest for the Continental region. Concerning the fulfilment of the regulatory limits, the mean of S. aureus and SCC levels in milk did not exceed them either in any region or scenario. Nevertheless, when looking at percentiles, the 10th percentile remained above the limits of S. aureus in Atlantic and Mediterranean, but not in the Continental region. The findings provide a snapshot of climate change impacts on raw milk losses due to mastitis. They will allow farmers to detect weaknesses and prepare them to develop adaptation plans to climate change.


Subject(s)
Mastitis, Bovine , Animals , Cattle , Cell Count/veterinary , Climate Change , Dairying , Farms , Female , Humans , Mastitis, Bovine/epidemiology , Mastitis, Bovine/microbiology , Milk , Staphylococcus aureus
11.
J Hazard Mater ; 429: 128399, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35236026

ABSTRACT

Microplastics (MPs) have been detected globally in the marine environment. MP polymers of various kinds have different toxicity potentials when decomposed into monomers. Also, the toxicity of MPs is influenced by the particle size distribution of MPs. Based on these parameters, a semi-quantitative risk assessment model has been developed in this study to rank MP polymers of potential health concern emerging from marine exposure pathways. A screening strategy was used to categorize three probability factors and two impact factors and calculate the final risk scores. Four different scenarios were assessed to investigate the influence of risk factors on the model output. The screening strategy prioritised PUR, PVC, PAN, ABS, PMMA, SAN, TPU, UP, PET, PS, and HDPE as the top-ranking polymers of concern (descending order). The sensitivity analysis revealed parameters that influenced the final risk score were hazard score based on monomer classification (RF5 coefficient +0.60)> particle size distribution of MPs (RF4 +0.54)> annual global waste generation (RF1 +0.52)> status of degradation in the marine environment (RF3 +0.32)> mean density of polymers (RF2 +0.16). The outcome of this study can inform the scientific community and the policymakers for better management of MPs where regulation and guidelines need to be considered.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Microplastics/toxicity , Plastics/toxicity , Polymers/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
12.
Sci Total Environ ; 823: 153730, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35143789

ABSTRACT

Marine plastic waste pollution is one of the most urgent global marine environmental problems worldwide. It has attracted worldwide attention from governments, the public, the scientific community, media and non-governmental organizations and has become a hot issue in current marine ecology and environmental research. This research aimed to conduct a traditional review of the current state of the art regarding microplastics (MPs) definition and characterisation, including an assessment of MPs detected in marine and food systems. The review revealed that plastic waste is not biodegraded and can only be broken down, predominantly by physical processes, into small particles of micron to nanometre size. Particles (<150 µm) can be ingested by living organisms, migrate through the intestinal wall and reach lymph nodes and other body organs. The primary pathway of human exposure to MPs has been identified as gastrointestinal ingestion (mainly seafood for the general population), pulmonary inhalation, and dermal infiltration. MPs may pollute drinking water, accumulate in the food chain, and release toxic chemicals that may cause disease, including certain cancers. Micro/nano-plastics may pose acute toxicity, (sub) chronic toxicity, carcinogenicity, genotoxicity, and developmental toxicity. In addition, nanoplastics (NPs) may pose chronic toxicity (cardiovascular toxicity, hepatotoxicity, and neurotoxicity). The toxicity of MPs/NPs primarily depends on the particle size distribution and monomeric composition/characteristics of polymers. Polyurethane (PUR), Polyacrylonitrile (PAN), Polyvinyl chloride (PVC), Epoxy resin, and Acrylonitrile-butadiene-styrene (ABS) are categorised as the most toxic polymers based on monomer toxicity. MP detection methods include combinations of spectroscopic analysis (RS and FTIR) and chromatography (TED-GC/MS). MP/NP toxicological properties and general quantitative and qualitative analysis methods used in MPs Risk Assessment (RA) are summarised. A robust dose-response model for MPs/NPs requires further investigation. This study lays the foundation for the evaluation of MP/NP risk assessment in the marine ecosystem and potential implications for human health.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Pollution/analysis , Food Chain , Humans , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
13.
J Food Prot ; 85(2): 355-372, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34614149

ABSTRACT

ABSTRACT: Nanotechnology has developed into one of the most groundbreaking scientific fields in the last few decades because it exploits the enhanced reactivity of materials at the atomic scale. The current classification of nanoparticles (NPs) used in foods is outlined in relation to the production and physicochemical characteristics. This review aims to concisely present the most popular and widely used inorganic and organic NPs in food industries. Considering that the toxicity of NPs is often associated with chemical reactivity, a series of in vitro toxicity studies are also summarized, integrating information on the type of NP studies and reported specifications, type of cells used, exposure conditions, and assessed end points. The important role of the digestive system in the absorption and distribution of nanoformulated foods within the body and how this affects the resultant cytotoxicity. Examples of how NPs and their accumulation within different organs are presented in relation to the consumption of specific foods. Finally, the role of developing human health risk assessments to characterize both the potential impact of the hazard and the likelihood or level of human exposure is outlined. Uncertainties exist around risk and exposure assessments of NPs due to limited information on several aspects, including toxicity, behavior, and bioaccumulation. Overall, this review presents current trends and needs for future assessments in toxicity evaluation to ensure the safe application of NPs in the food industry.


Subject(s)
Nanoparticles , Food , Humans , Nanoparticles/toxicity , Risk Assessment
14.
Chemosphere ; 286(Pt 3): 131928, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34418654

ABSTRACT

Heavy metal pollution may cause a serious threat to human health and is a global problem. The bio-availability of metals and metalloids (metal (loid)s) in the soil is a dominating parameter for metal (loid) uptake by plants, and which may subsequently be ingested by individuals through the food pathway. This study aimed to develop a novel approach based on a semi-quantitative probability-impact (P-I) matrix with the help of a GIS mapping tool. ArcGIS was used for data analysis, classification, and reclassification of parameters of the model. Nine influencing parameters were selected for a semi-quantitative risk ranking. These are soil pH, soil organic carbon (SOC), soil texture class, slope, field/soil drainage class, Integrated Risk Quotient (IRQ), proximity to mines, urban activity, and potential biosolids application areas. The results revealed that certain areas (including Co. Louth, Co. Wicklow, Co. Wexford) along the East coast of Ireland pose a higher relative risk. Therefore, in-depth quantitative human health risk assessment is proposed considering the potential bioaccumulation of metal (loid)s if the crops are grown on land with elevated levels of metal (loid)s. Furthermore, this work reveals the usefulness of the GIS mapping techniques in risk assessment to rank areas of elevated levels of potential pollutants.


Subject(s)
Metalloids , Metals, Heavy , Soil Pollutants , Carbon , China , Environmental Monitoring , Geographic Information Systems , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
15.
Sci Total Environ ; 810: 151168, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34710405

ABSTRACT

Drinking water and farm-to-fork pathways have been identified as the predominant environmental pathways associated with human exposure (HE) to Pb. This study integrates a GIS-based survey of metal concentrations in soil and a probabilistic quantitative risk assessment of Pb through the food chain. The case study area was selected in the east of Ireland. A step-wise exposure assessment collated the data for Pb concentration in soil and water media, bioaccumulation of Pb in unprocessed food products, such as potatoes, carrots, green vegetables, and salad vegetables. The daily mean HE to Pb through selected food products was found to be 0.073 mg day-1, where a mean weekly exposure was estimated as 0.0065 mg kg body weight-1 week-1. Multiple risk estimates were used. Hazard Quotient (HQ), Daily Dietary Index (DDI), Daily Intake of Metal (DIM), Health Risk Index (HRI), Target Hazard Quotient (THQ) and Cancer Risk (CR) were found as 0.234 to 0.669, 0.002, 0.0002, 0.020 to 0.057, 0.234 to 0.669, and 0.00001, respectively which signify a low to moderate risk. A sensitivity analysis revealed that intake of potato is the most sensitive parameter of the model, which is positively correlated (coeff. + 0.66) followed by concentration of Pb in the arable soil (+0.49), bioaccumulation in tubers (+0.37), consumption of salad vegetables (+0.20), and consumption of green vegetables (+0.13) (top 5). A back-calculated limit of Pb in the soil (51 mg kg-1) justifies the lower threshold limit of Pb (50-300 mg kg-1) in agricultural soil set by the European Union to mitigate potential bio-transfer into food products. The study concludes there is a low to moderate risk posed by Pb, within the system boundary of the probabilistic model, and highlights the significance of limiting Pb concentrations in the vegetable producing agricultural soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring , Food Contamination/analysis , Humans , Lead , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Vegetables
16.
Sci Total Environ ; 806(Pt 3): 151227, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34715220

ABSTRACT

Farmyard manure and slurry (FYM&S) and anaerobic digestate are potentially valuable soil conditioners providing important nutrients for plant development and growth. However, these organic fertilisers may pose a microbial health risk to humans. A quantitative microbial risk assessment (QMRA) model was developed to investigate the potential human exposure to pathogens following the application of FYM&S and digestate to agricultural land. The farm-to-fork probabilistic model investigated the fate of microbial indicators (total coliforms and enterococci) and foodborne pathogens in the soil with potential contamination of ready-to-eat salads (RTEs) at the point of human consumption. The processes examined included pathogen inactivation during mesophilic anaerobic digestion (M-AD), post-AD pasteurisation, storage, dilution while spreading, decay in soil, post-harvest washing processes, and finally, the potential growth of the pathogen during refrigeration/storage at the retail level in the Irish context. The QMRA highlighted a very low annual probability of risk (Pannual) due to Clostridium perfringens, norovirus, and Salmonella Newport across all scenarios. Mycobacterium avium may result in a very high mean Pannual for the application of raw FYM&S, while Cryptosporidium parvum and pathogenic E. coli showed high Pannual, and Listeria monocytogenes displayed moderate Pannual for raw FYM&S application. The use of AD reduces this risk; however, pasteurisation reduces the Pannual to an even greater extent posing a very low risk. An overall sensitivity analysis revealed that mesophilic-AD's inactivation effect is the most sensitive parameter of the QMRA, followed by storage and the decay on the field (all negatively correlated to risk estimate). The information generated from this model can help to inform guidelines for policymakers on the maximum permissible indicator or pathogen contamination levels in the digestate. The QMRA can also provide the AD industry with a safety assessment of pathogenic organisms resulting from the digestion of FYM&S.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Salads , Anaerobiosis , Escherichia coli , Humans , Manure , Risk Assessment
17.
Sci Total Environ ; 802: 149839, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34455276

ABSTRACT

Elevated human exposure to metals and metalloids (metal(loid)s) may lead to acute sickness and pose a severe threat to human health. The human body is exposed to metal(loid)s principally through food, water, supplements, and (occasionally) air. There are inherent background levels of many metal(loid)s in regional soils as a consequence of geological sources. Baseline levels coupled with anthropogenic sources such as regional application of biosolids may lead to increased levels of certain metal(loid)s in soil, leading to potential transfer to water sources and potential uptake by plants. The latter could potentially transfer into the feed-to-food chain, viz. grazing animals, and bio-transfer to food products resulting in human exposure. This study addresses health concerns due to excessive intake of metal(loid)s by conducting a traditional review of peer-reviewed journals between 2015 and 2019, secondary references and relevant websites. The review identified the most researched metal(loid)s as Cu, Zn, Pb, Cd, Ni, Cr, As, Hg, Mn, Fe in the environment. The potential uptake of metal(loid)s by plants (phytoavailability) is a function of the mobility/retainability of metal(loid)s in the soil, influenced by soil geochemistry. The most critical parameters (including soil pH, soil organic matter, clay content, cation exchange capacity, the capability of decomposition of organic matter by microbes, redox potential, ionic strength) influencing metal(loid)s in soil are reviewed and used as a foundation to build a framework model for ranking metal(loid)s of concern. A robust quantitative risk assessment model is recommended for evaluating risk from individual metal(loid)s based on health-based indices (Daily Dietary Index (DDI), No Observed Adverse Effect Level (NOAEL), and Lowest Observed Adverse Effect Level (LOAEL)). This research proposes a risk assessment framework for potentially harmful metal(loid)s in the environment and highlights where regulation and intervention may be required.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring , Humans , Ireland , Metals, Heavy/analysis , Risk Factors , Soil Pollutants/analysis
18.
J Environ Manage ; 299: 113627, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34467857

ABSTRACT

Animal waste contains high numbers of microorganisms and therefore can present a potential biological threat to human health. During episodic rainfall events resulting in runoff, microorganisms in the waste and soil may migrate into surface runoff, contaminating surface water resources. A probabilistic human exposure (HE) model was created to determine exposure to faecal indicator bacteria (FIB): total coliforms (TC), E. coli and enterococci following application of bio-based fertiliser (dairy cattle slurry, digestate) to grassland; using a combination of experimental field results and literature-based data. This step was followed by a quantitative microbial risk assessment (QMRA) model for pathogenic E. coli based on a literature-based dose-response model. The results showed that the maximum daily HE (HEdaily) is associated with E. coli for unprocessed slurry (treatment T1) on day 1, the worst-case scenario where the simulated mean HEdaily was calculated as 2.84 CFU day -1. The results indicate that the overall annual probability of risk (Pannual) of illness from E. coli is very low or low based on the WHO safe-limit of Pannual as 10 -6. In the worst-case scenario, a moderate risk was estimated with simulated mean Pannual as 1.0 × 10 -5. Unpasteurised digestate application showed low risk on day 1 and 2 (1.651 × 10 -6, 1.167 × 10 -6, respectively). Pasteurised digestate showed very low risk in all scenarios. These results support the restriction imposed on applying bio-based fertiliser if there is any rain forecast within 48 h from the application time. This study proposes a future extension of the probabilistic model to include time, intensity, discharge, and distance-dependant dilution factor. The information generated from this model can help policymakers ensure the safety of surface water sources through the quality monitoring of FIB levels in bio-based fertiliser.


Subject(s)
Escherichia coli , Fertilizers , Grassland , Water Microbiology , Animals , Bacteria , Cattle , Environmental Exposure , Feces/microbiology , Fertilizers/microbiology , Humans , Risk Assessment
19.
J Environ Manage ; 298: 113531, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34426224

ABSTRACT

Several metals and metalloids (metal(loid)s) have been identified as potential pollutants. Naturally occurring background levels and anthropogenic sources (direct or indirect) contribute to the baseline concentration of metal(loid)s in the environment. Recorded metal(loid)s in various environmental media (soil, water, sediment) were evaluated from existing databases. The first database is the national soil database or Soil Geochemical Atlas of Ireland (SGAI). The second one is a higher resolution Tellus project database created by the Geological Survey Ireland. This study focussed on 16 metal(loid)s: As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Sn, U, V, and Zn. A Risk Quotient (RQ) and Integrated Risk Quotient (IRQ) were used to analyse individual and combined effects of selected metal(loid)s due to the potential ingestion by humans through the food chain. The results revealed that in a few locations of Ireland, the predicted environmental concentration (PEC) of As, Cd, Pb and Zn in the soil was higher than the threshold values resulting in an RQ exceedance of 1. The RQ values of metal(loid)s corresponding to the water, and sediment samples suggest minimal exceedance of threshold values. The exceedance of the IRQ values (>2) for the soil, water, and sediment samples is 32.3 %, 14.8 %, and 1.3 %, respectively. Regions along the East coast of Ireland may pose a higher potential relative risk compared to other parts of Ireland. This research suggests the need for in-depth risk assessment studies on Cd, As and Pb, which showed elevated levels. Furthermore, it is essential to understand the fate of metal(loid)s and their risk assessment to inform regulations around metal(loid)s where intervention may be required.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Humans , Ireland , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis
20.
Sci Total Environ ; 800: 149574, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34399337

ABSTRACT

Farmyard manure and slurry (FYM&S) is a valuable feedstock for anaerobic digestion (AD) plants. However, FYM&S may contain high concentrations of pathogens, and complete inactivation through the AD process is unlikely. Thus, following land application of digestate, pathogens may contaminate a range of environmental media posing a potential threat to public health. The present study aimed to combine primary laboratory data with literature-based secondary data to develop an Excel-based exposure assessment model (ADRISK) using a gamma generalised linear model to predict the final microorganism count in the digestate. This research examines the behaviour of a suite of pathogens (Cryptosporidium parvum, norovirus, Mycobacterium spp., Salmonella spp., Listeria monocytogenes, Clostridium spp., and pathogenic Escherichia coli) and indicators (total coliforms, E. coli, and enterococci) during mesophilic anaerobic digestion (M-AD) at 37 °C, pre/post-AD pasteurisation, and after a period of storage (with/without lime) for different feedstock proportions (slurry:food waste: 0:1, 1:3, 2:1, and 3:1). ADRISK tool simulations of faecal indicator bacteria levels across all scenarios show that the digestate can meet the EU standard without pasteurisation if the AD runs at 37 °C or a higher temperature with a higher C:N ratio (recipe 3) and a hydraulic retention time ≥ 7 days. The storage of digestate also reduced levels of microorganisms in the digestate. The Irish pasteurisation process (60 °C for 4 days), although more energy-intensive, is more effective than the EU pasteurisation (70 °C for 1 h) specification. Pre-AD pasteurisation was more effective for C. parvum, norovirus, Mycobacterium thermoresistibile. However, post-AD literature-based pasteurisation is most likely to assure the safety of the digestate. The information generated from this model can inform policy-makers regarding the optimal M-AD process parameters necessary to maximise the inactivation of microorganisms, ensuring adverse environmental impact is minimised, and public health is protected.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Refuse Disposal , Anaerobiosis , Escherichia coli , Food , Humans , Manure , Mycobacteriaceae
SELECTION OF CITATIONS
SEARCH DETAIL
...