Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Nat Commun ; 4: 2109, 2013.
Article in English | MEDLINE | ID: mdl-23839206

ABSTRACT

Progress in realizing the SI second had multiple technological impacts and enabled further constraint of theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4 × 10(-16), have already been overtaken by atomic clocks referenced to an optical transition, which are both more stable and more accurate. Here we present an important step in the direction of a possible new definition of the second. Our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.5 × 10(-16). Their comparison with three independent caesium fountains shows a degree of accuracy now only limited by the best realizations of the microwave-defined second, at the level of 3.1 × 10(-16).

2.
Phys Rev Lett ; 91(15): 153003, 2003 Oct 10.
Article in English | MEDLINE | ID: mdl-14611465

ABSTRACT

We report on collective nonlinear dynamics in an optical lattice formed inside a high finesse ring cavity in a so far unexplored regime, where the light shift per photon times the number of trapped atoms exceeds the cavity resonance linewidth. We observe bistability and self-induced squeezing oscillations resulting from the retroaction of the atoms upon the optical potential wells. We can well understand most of our observations within a simplified model assuming adiabaticity of the atomic motion. Nonadiabatic aspects of the atomic motion are reproduced by solving the complete system of coupled nonlinear equations of motion.

SELECTION OF CITATIONS
SEARCH DETAIL
...