Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 15(1): 427, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380389

ABSTRACT

BACKGROUND: The infraorder Rhigonematomorpha comprises a group of obligate parasitic nematodes of millipedes (Arthropoda: Diplopoda). The current species identification of Rhigonematomorpha nematodes remains mainly based on morphological features, with molecular-based identification still in its infancy. Also, current knowledge of the phylogeny of Rhigonematomorpha is far from comprehensive. METHODS: The morphology of Rhigonematomorpha nematodes belonging to the genus Rhigonema, collected from the millipede Spirobolus bungii Brandt (Diplopoda: Spirobolida) in China, was studied in detail using light and scanning electron microscopy. Five different genetic markers, including the nuclear small ribosomal subunit (18S), internal transcribed spacer (ITS) and large ribosomal subunit (28S) regions and the mitochondrial cox1 and cox2 genes of these Rhigonematomorpha nematodes collected from China and Rhigonema naylae collected from Japan were sequenced and analyzed using Bayesian inference (BI) and Assemble Species by Automatic Partitioning (ASAP) methods. Phylogenetic analyses that included the most comprehensive taxa sampling of Rhigonematomorpha to date were also performed based on the 18S + 28S genes using maximum likelihood (ML) and BI methods. RESULTS: The specimens of Rhigonema collected from S. bungii in China were identified as a new species, Rhigonema sinense n. sp. Striking variability in tail morphology was observed among individuals of R. sinense n. sp. ASAP analyses based on the 28S, ITS, cox1 and cox2 sequences supported the species partition of R. sinense n. sp. and R. naylae, but showed no evidence that the different morphotypes of R. sinense n. sp. represent distinct genetic lineages. BI analyses also indicated that R. sinense n. sp. represents a separated species from R. naylae based on the cox1 and cox2 genes, but showed that R. naylae nested in samples of R. sinense n. sp. based on the ITS and 28S data. Phylogenetic results showed that the representatives of Rhigonematomorpha formed two large clades. The monophyly of the families Carnoyidae and Ichthyocephalidae and the genus Rhigonema was rejected. The representatives of the family Ransomnematidae clustered together with the family Hethidae with strong support. CONCLUSIONS: A new species of Rhigonematomorpha, R. sinense n. sp. is described based on morphological and molecular evidence. ASAP analyses using 28S, ITS, cox1 and cox2 data indicate the striking variability in tail morphology of R. sinense n. sp. as intraspecific variation, and also suggest that partial 28S, ITS, cox1 and cox2 markers are effective for molecular identification of Rhigonematomorpha nematodes. The phylogenetic results support the traditional classification of Rhigonematomorpha into the two superfamilies Rhigonematoidea and Ransomnematoidea, and indicate that the families Carnoyidae and Ichthyocephalidae and the genus Rhigonema are non-monophyletic. The present phylogeny strongly supports resurrection of the family Brumptaemiliidae, and also indicates that the family Ransomnematidae is sister to the family Hethidae.


Subject(s)
Arthropods , Nematoda , Spirurida , Humans , Animals , Phylogeny , Bayes Theorem , Cyclooxygenase 2/genetics , Nematoda/genetics
2.
BMC Ecol Evol ; 21(1): 120, 2021 06 12.
Article in English | MEDLINE | ID: mdl-34118872

ABSTRACT

BACKGROUND: How various host-parasite combinations have been established is an important question in evolutionary biology. We have previously described two nematode species, Rhigonema naylae and Travassosinema claudiae, which are parasites of the xystodesmid millipede Parafontaria laminata in Aichi Prefecture, Japan. Rhigonema naylae belongs to the superfamily Rhigonematoidea, which exclusively consists of parasites of millipedes. T. claudiae belongs to the superfamily Thelastomatoidea, which includes a wide variety of species that parasitize many invertebrates. These nematodes were isolated together with a high prevalence; however, the phylogenetic, evolutionary, and ecological relationships between these two parasitic nematodes and between hosts and parasites are not well known. RESULTS: We collected nine species (11 isolates) of xystodesmid millipedes from seven locations in Japan, and found that all species were co-infected with the parasitic nematodes Rhigonematoidea spp. and Thelastomatoidea spp. We found that the infection prevalence and population densities of Rhigonematoidea spp. were higher than those of Thelastomatoidea spp. However, the population densities of Rhigonematoidea spp. were not negatively affected by co-infection with Thelastomatoidea spp., suggesting that these parasites are not competitive. We also found a positive correlation between the prevalence of parasitic nematodes and host body size. In Rhigonematoidea spp., combinations of parasitic nematode groups and host genera seem to be fixed, suggesting the evolution of a more specialized interaction between Rhigonematoidea spp. and their host. On the other hand, host preference of Thelastomatoidea spp. was not specific to any millipede species, indicating a non-intimate interaction between these parasites and their hosts. CONCLUSIONS: The two nematode superfamilies, Rhigonematoidea and Thelastomatoidea, have phylogenetically distinct origins, and might have acquired xystodesmid millipede parasitism independently. Currently, the two nematodes co-parasitize millipedes without any clear negative impact on each other or the host millipedes. Our study provides an example of balanced complex symbioses among parasitic nematodes and between parasitic nematodes and host millipedes, which have been established over a long evolutionary history.


Subject(s)
Arthropods , Nematoda , Animals , Japan/epidemiology , Nematoda/genetics , Phylogeny , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...